361 matches
-
franceză este derivată din "tung sten" (în suedeză "piatră grea"). În Suedia denumirea se referea însă la wolframat de calciu. Wolfram pur a fost produs prima dată în 1783 de către frații spanioli Fausto și Juan José Elhuyar prin reducția de trioxid de wolfram din wolframit. Wolframul este un metal maleabil, ductil și în stare pură extrem de rezistent. Ceea ce este extraordinar la acest metal observăm prin faptul că rezistența la rupere a unei sârme de wolfram poate ajunge până la 400 daN/mm²
Wolfram () [Corola-website/Science/304472_a_305801]
-
metalele alcalino-pământoase și alcaline, elemente puternic electropozitive, arsenul reacționează cu ușurință, formând arseniuri. Arseniurile se pot obține prin topirea componenților, prin trecerea topiturii sau vaporilor de arsen peste metale, dar toate se pot obține și prin aluminotermie sau prin reducerea trioxidului de arsen și a clorurii metalului cu hipofosfit de sodiu (NaHPO). Cu metalele grele și din grupele secundare, arsenul formează combinații intermetalice, ce împrumută structura spațială a sulfurilor: arseniura de Ni este similară cu FeS, PtAs, FeS,iar FeS are
Arsen () [Corola-website/Science/299389_a_300718]
-
se găsească arsen în proporție de 1 la 1000 pentru ca acestea să-și piardă complet maleabilitatea și să devină casante. Plumbul folosit la alicele de vânătoare conține până la 2% As, dar datorită rămânerii acestora în natură, arsenul se transformă în trioxid de arsen, a cărui toxicitate pentru organismele vii este bine cunoscută. Adăugat în cupru în proporție de 0,25%, îi ridică temperatura de înmuiere și îi mărește rezistența anticorozivă. Arsenul este folosit cu mare succes și în electronică, datorită proprietăților
Arsen () [Corola-website/Science/299389_a_300718]
-
caracterizează prin proprietăți de refracție bune și densitate mare. Flintul și ștrasul conțin un procent de plumb mai mare decât cristalul. Flintul se folosește pentru prisme și lentile optice. Prin adăugarea unor cantități mici de oxid de aluminiu (AlO) sau trioxid de bor (BO) se obțin sticle rezistente la variații bruște de temperatură care se folosesc la fabricarea vaselor de laborator. Au o rezistență chimică mare și un coeficient de dilatare mic. Se obțin dacă se adaugă în topitură unii oxizi
Sticlă () [Corola-website/Science/297786_a_299115]
-
moleculari și coloranții coloidali. Coloranții ionici sunt, în general, oxizii metalici. De exemplu, sticla roșie conține și oxid de cupru, sticla galbenă sulfat de cadmiu, sticla albastră oxid de cobalt, sticla verde oxid de crom, sticla violetă oxid de mangan. Trioxidul de uraniu dă o culoare galben-verde însoțită de o frumoasă fluorescență verde. Coloranții moleculari sunt reprezentați de seleniu care dă o culoare roz, de sulf care dă o culoare galbenă sau galbenă-cafenie si mai ales de sulfurile și seleniurile diferitelor
Sticlă () [Corola-website/Science/297786_a_299115]
-
de culoare galbenă de mai sus care conține ioni de cromat culoarea se schimbă înapoi în portocaliu deoarece se formează ioni de bicromat. Prin încălzirea cu acid concentrat se eliberează oxigen. La fel ca și alți compuși ai cromului hexavalent (trioxid de crom, bicromat de sodiu), bicromatul de potasiu poate fi utilizat la prepararea acidului cromic care poate fi utilizat pentru curățarea sticlei și a materialelor de gravare. Este utilizat ca ingredient în ciment deoarece întârzie așezarea mixturii și îmbunătățește densitatea
Bicromat de potasiu () [Corola-website/Science/332200_a_333529]
-
de culoare galben-portocalie și este singurul oxid de tipul anti-clorură de cadmiu (CdCl). Oxidul se vaporizează la 250 °C iar la temperaturi mai mari de 400 °C se descompune în cesiu metalic și peroxid de cesiu (CsO). În afară de superoxidul și trioxidul de cesiu (CsO), au fost studiați și alți suboxizi viu culorați. Printre aceștia se numără CsO, CsO, CsO și CsO (negru-verzui ), CsO, CsO, precum și CsO. Cel din urmă poate fi încălzit sub vid pentru a genera CsO. Sunt cunoscuți, de
Cesiu () [Corola-website/Science/304474_a_305803]
-
în producția chimicalelor ca acidul acrilic, antrachinona, oxidul de etilenă, metanolul, anhidrida ftalică, stirenul, metacrilatul de metil și alte olefine. Cesiul mai este folosit și în procedeul de obținere a acidului sulfuric, în timpul conversiei catalitice a dioxidului de sulf la trioxid de sulf. Totodată, cesiul metalic este folosit și la purificarea dioxidului de carbon. Fluorura de cesiu are utilizări în chimia organică , fiind o bază, sau ca sursă anhidră de ioni de fluorură. Adesea, sărurile de cesiu înlocuiesc sărurile de potasiu
Cesiu () [Corola-website/Science/304474_a_305803]
-
simplu decât apa și în soluție formează ionul amoniu (NH). Amoniacul lichid este de fapt amfiprotic și formează ioni de amoniu și de amide (NH); amidele și nitrilii (N) sunt cunoscuți, dar se descompun la hidroliză. Oxizii cei mai răspândiți, trioxidul de azot (NO) și pentoxidul de azot (NO) sunt oarecum instabili și explozivi. Acizii corespunzători sunt acidul nitros (HNO) și acidul nitric (HNO), cu sărurile corespunzătoare numite nitriți și nitrați. Acidul nitric este unul dintre puținii acizi mai tari decât
Azot () [Corola-website/Science/300740_a_302069]
-
cu atenție, fiind o substanță higroscopică și un puternic agent lacrimogen. A fost sintetizat pentru prima oară în anul 1854 de către Williamson, prin acțiunea pentaclorurii de fosfor asupra acidului sulfuric; ulterior, va fi rezultatul acțiunii directe a acidului clorhidric asupra trioxidului de sulf. Acest acid poate fi preparat, de asemenea, prin distilarea tetraclorurii de carbon cu acid sulfuric oleum. Reacționează violent în contact cu apa, producând vapori toxici de acid clorhidric și acid sulfuric ce pot irita ochii, membranele mucoase, pielea
Acid clorosulfonic () [Corola-website/Science/313649_a_314978]
-
și a hârtiei. Acidul clorosulfonic a fost sintetizat pentru prima oară de către Alexander William Williamson (1824-1904) în anul 1854, fiind rezultatul chimic al reacției dintre pentaclorura de fosfor și acid sulfuric concentrat, apoi prin acțiunea directă a acidului clorhidric asupra trioxidului de sulf. Alte metode de preparare includ distilarea acidului sulfuric fumans (oleum) cu pentoxid de fosfor într-un mediu cu HCl gazos; acțiunea triclorurii de fosfor sau oxiclorura, clor, clorura de tionil sau monoclorura de sulf asupra acidului sulfuric fumans
Acid clorosulfonic () [Corola-website/Science/313649_a_314978]
-
acid clorosulfonic" este denumirea comercială cea mai cunoscută; alte denumiri pentru această substanță sunt "clorhidrina sulfurică", "acid sulfuric clorhidrat", "acid monoclorosulfuric", "acid monoclorosulfonic", "hidroxiclorat de sulfuril". Centrele industriale moderne produc acidul clorosulfonic prin combinarea directă a unor cantități echimolare de trioxid de sulf și acid clorhidric gazos, iar datorită naturii foarte exotermice și a procesului aflat sub flux continuu, înlăturarea căldurii este esențială pentru menținerea unei temperaturi de reacție la 50-80C. Trioxidul de sulf poate fi utilizat în forma lichidă în
Acid clorosulfonic () [Corola-website/Science/313649_a_314978]
-
clorosulfonic prin combinarea directă a unor cantități echimolare de trioxid de sulf și acid clorhidric gazos, iar datorită naturii foarte exotermice și a procesului aflat sub flux continuu, înlăturarea căldurii este esențială pentru menținerea unei temperaturi de reacție la 50-80C. Trioxidul de sulf poate fi utilizat în forma lichidă în procent de 100% sau ca și un amestec gazos mixt diluat; de asemenea, conținutul de acid clorhidric trebuie să fie conținut în aceleași condiții de diluție: Reactorul chimic poate fi o
Acid clorosulfonic () [Corola-website/Science/313649_a_314978]
-
mai puternică aciditate a acestuia, alături de constanta dielectrică mare (60), precum și alte proprietăți indică faptul că este un potențial solvent pentru un număr de soluți inorganici și organici. Încălzirea acestui acid determină descompunerea parțială în clorură de sulfuril, acid sulfuric, trioxid de sulf, acid pirosulfuric, acid clorhidric, clorură de pirosulfuril, precum și alți compuși. La temperatura de 170 C, se stabilește un echilibru între acidul clorosulfuric, clorura de sulfuril și acidul sulfuric. Dioxidul de sulf și clorul nu sunt observate atunci când acidul
Acid clorosulfonic () [Corola-website/Science/313649_a_314978]
-
au fost produse. Este utilizat în principal în producerea fertilizatorilor și pentru a reprezenta alți acizi minerali, cum ar fi acidul clorhidric sau acidul fosforic. Este în mod frecvent utilizat în soluții apoase de diferite concentrații. Anhidrida acidului sulfuric este trioxidul de sulf (SO). Atunci când trioxidul de sulf este dizolvat în acidul sulfuric peste raportul stoichiometric, soluția este cunoscută sub denumirea de "acid sulfuric fumans" sau "oleum" , întrucât aceasta conține sulf ce este emis cu ușurință ca fum. Acizii asociați celui
Acid sulfuric () [Corola-website/Science/307331_a_308660]
-
în principal în producerea fertilizatorilor și pentru a reprezenta alți acizi minerali, cum ar fi acidul clorhidric sau acidul fosforic. Este în mod frecvent utilizat în soluții apoase de diferite concentrații. Anhidrida acidului sulfuric este trioxidul de sulf (SO). Atunci când trioxidul de sulf este dizolvat în acidul sulfuric peste raportul stoichiometric, soluția este cunoscută sub denumirea de "acid sulfuric fumans" sau "oleum" , întrucât aceasta conține sulf ce este emis cu ușurință ca fum. Acizii asociați celui sulfuric sunt acidul sulfuros (HSO
Acid sulfuric () [Corola-website/Science/307331_a_308660]
-
în natură. În atmosferă, el este format din dioxidul de sulf, care la rândul său este produs prin combustia substanțelor conținătoare de sulf sau din erupții vulcanice. Dioxidul de sulf este oxidat de către radicalii de hidroxil sau de către oxigen la trioxid de sulf. Cu apa, acesta formează în final acidul sulfuric liber. Continuarea oxidării permite formarea trioxidului de sulf de către ozon sau peroxid de hidrogen. În ploaia acidă, acidul sulfuric trece sub formă diluată (sulfat de hidrogen sau ioni de sulfat
Acid sulfuric () [Corola-website/Science/307331_a_308660]
-
produs prin combustia substanțelor conținătoare de sulf sau din erupții vulcanice. Dioxidul de sulf este oxidat de către radicalii de hidroxil sau de către oxigen la trioxid de sulf. Cu apa, acesta formează în final acidul sulfuric liber. Continuarea oxidării permite formarea trioxidului de sulf de către ozon sau peroxid de hidrogen. În ploaia acidă, acidul sulfuric trece sub formă diluată (sulfat de hidrogen sau ioni de sulfat) și ajunge pe pământ. De asemenea, există o cantitate mică de acid sulfuric liber și în
Acid sulfuric () [Corola-website/Science/307331_a_308660]
-
contact. Procesul camerei de plumb este o metodă veche și produce o soluție de acid în apă de concentrație 62÷78%. Prin procesul de contact se obține acid sulfuric pur. În ambele procese, dioxidul de sulf, SO, este oxidat la trioxid de sulf SO, care este dizolvat în apă. Dioxidul de sulf este obținut prin arderea sulfului: prin prăjirea piritei (sulfura de fier) sau a altor sulfuri metalice sau prin arderea hidrogenului sulfurat, Bioxidul de sulf este oxidat catalitic la trioxid
Acid sulfuric () [Corola-website/Science/307331_a_308660]
-
trioxid de sulf SO, care este dizolvat în apă. Dioxidul de sulf este obținut prin arderea sulfului: prin prăjirea piritei (sulfura de fier) sau a altor sulfuri metalice sau prin arderea hidrogenului sulfurat, Bioxidul de sulf este oxidat catalitic la trioxid de sulf În absența catalizatorului, oxidarea SO este lentă. În procesul vechi cu camera de plumb, catalizatorul este dioxidul de azot. În procedeul contact, catalizatorul este oxidul de vanadiu, VO. Trioxidul de sulf produs este dizolvat în acid sulfuric 98
Acid sulfuric () [Corola-website/Science/307331_a_308660]
-
hidrogenului sulfurat, Bioxidul de sulf este oxidat catalitic la trioxid de sulf În absența catalizatorului, oxidarea SO este lentă. În procesul vechi cu camera de plumb, catalizatorul este dioxidul de azot. În procedeul contact, catalizatorul este oxidul de vanadiu, VO. Trioxidul de sulf produs este dizolvat în acid sulfuric 98%, în care reacționează cu cele 2% apă, formand HSO. Materia primă pentru producția acidului sulfuric este adesea sulful elementar în cantități mari (2007: 66 milioane de tone ) obținut prin desulfurizarea gazelor
Acid sulfuric () [Corola-website/Science/307331_a_308660]
-
într-un cuptor rotativ. Procedeul, mare consumator de energie, poate fi făcut mai profitabil prin adăugarea nisipului și argilei și obținându-se ca produs secundar ciment. În RDG, procedura a fost efectuată pe scară largă. Pentru continuarea producției trebuie format trioxidul de sulf. Reacția directă dintre sulf și oxigen pentru a forma trioxid de sulf nu are loc, deoarece echilibrul reacției de oxidare a dioxidului de sulf la trioxid de sulf la temperaturi joase este doar de partea trioxidului de sulf
Acid sulfuric () [Corola-website/Science/307331_a_308660]
-
mai profitabil prin adăugarea nisipului și argilei și obținându-se ca produs secundar ciment. În RDG, procedura a fost efectuată pe scară largă. Pentru continuarea producției trebuie format trioxidul de sulf. Reacția directă dintre sulf și oxigen pentru a forma trioxid de sulf nu are loc, deoarece echilibrul reacției de oxidare a dioxidului de sulf la trioxid de sulf la temperaturi joase este doar de partea trioxidului de sulf. La aceste temperaturi, totuși, rata de reacție este prea scăzută. Prin urmare
Acid sulfuric () [Corola-website/Science/307331_a_308660]
-
procedura a fost efectuată pe scară largă. Pentru continuarea producției trebuie format trioxidul de sulf. Reacția directă dintre sulf și oxigen pentru a forma trioxid de sulf nu are loc, deoarece echilibrul reacției de oxidare a dioxidului de sulf la trioxid de sulf la temperaturi joase este doar de partea trioxidului de sulf. La aceste temperaturi, totuși, rata de reacție este prea scăzută. Prin urmare, cu ajutorul unor catalizatori adecvați, condițiile de reacție sunt controlate astfel încât reacția să aibă loc mai repede
Acid sulfuric () [Corola-website/Science/307331_a_308660]
-
trebuie format trioxidul de sulf. Reacția directă dintre sulf și oxigen pentru a forma trioxid de sulf nu are loc, deoarece echilibrul reacției de oxidare a dioxidului de sulf la trioxid de sulf la temperaturi joase este doar de partea trioxidului de sulf. La aceste temperaturi, totuși, rata de reacție este prea scăzută. Prin urmare, cu ajutorul unor catalizatori adecvați, condițiile de reacție sunt controlate astfel încât reacția să aibă loc mai repede la temperaturi mult prea ridicate. Atunci când este folosit procesul de
Acid sulfuric () [Corola-website/Science/307331_a_308660]