376 matches
-
indivizibil scris sub formă de fracție ordinară. Numitorul "Y" reprezintă miza în unități pe care trebuie s-o parieze pariorul, pentru a avea un profit de "X" unități în cazul unui eveniment câștigător. Se poate transforma foarte ușor în formatul zecimal 'calculând' fracția și adunând 1. "Exemplu:" o cotă de 1/4 în sistemul britanic înseamnă a rezolva calculul 1/4+1, adică 0.25+1, deci 1.25. O cotă de 3/1 înseamnă 3/1+1, adică 4.00
Pariuri Sportive () [Corola-website/Science/305564_a_306893]
-
a câte 13 baghete pe care culisau biluțe găurite, 2 deasupra împărțirii (cu valoare de 5) și 5 dedesubt (cu valoare de 1). Prima baghetă de la stânga reprezenta unitatea, apoi, tot la stânga, zecile și tot așa mai departe conform sistemului zecimal. Abacul era în China deja din sec. al XIII-lea, răspândindu-se în uzul comun abia dup sec. al XIV-lea. Cheng Dawei a scris un manual de folosire a abacului în secolul al XVI-lea. Abacul japonez ("soroban"), este
Abac () [Corola-website/Science/302314_a_303643]
-
celui mai semnificativ bit reprezenta semnul numărului; numerele pozitive aveau un zero pe acea poziție, iar cele negative aveau unu. Astfel, numerele ce puteau fi reprezentate pe un cuvânt de 32 de biți erau de la −2 până la +2 − 1 (în zecimal, de la − până la +). Setul de intrucțiuni pe trei biți al lui SSEM permitea maximum 8 (2) instrucțiuni diferite. Spre deosebire de convenția modernă, spațiul de stocare al mașinii era aranjat cu cifrele cel mai puțin semnificative la stânga; astfel, numărul zecimal 1 era reprezentat
Manchester Small-Scale Experimental Machine () [Corola-website/Science/315413_a_316742]
-
2 − 1 (în zecimal, de la − până la +). Setul de intrucțiuni pe trei biți al lui SSEM permitea maximum 8 (2) instrucțiuni diferite. Spre deosebire de convenția modernă, spațiul de stocare al mașinii era aranjat cu cifrele cel mai puțin semnificative la stânga; astfel, numărul zecimal 1 era reprezentat pe trei biți ca "100", și nu ca "001". Operațiunile negative ale SSEM erau cauzate de lipsa de hardware pentru efectuarea altor operațiuni aritmetice decât scăderea. Se considera că nu este necesară construirea unui sumator înainte de începerea
Manchester Small-Scale Experimental Machine () [Corola-website/Science/315413_a_316742]
-
n-1" biți au semnificație diferită pentru numerele pozitive și cele negative. La reprezentarea numerelor întregi pozitive, pe cei "n-1" biți se trece reprezentarea în bază doi a valorii absolute a numărului. Astfel, reprezentarea pe 4 biți a numărului zecimal "3" este "0011", primul "0" fiind bitul de semn, iar "011" fiind reprezentarea binară a numărului 3. Matematic, reprezentarea unui număr negativ în complement față de doi este valoarea formula 7, unde "V" este valoarea absolută a numărului reprezentat. De exemplu, numărul
Complement față de doi () [Corola-website/Science/310019_a_311348]
-
proiect. În 1822, Charles Babbage a propus o astfel de mașină într-o adresă trimisă Royal Astronomical Society la 14 iunie, adresă intitulată „Notă privind aplicarea unor mașini în calculul tabelelor astronomice și matematice”. Această mașină utiliza sistemul de numerație zecimal și era acționată printr-o manivelă. Guvernul britanic a finanțat la început proiectul, dar a sistat finanțarea când a început să se vadă că mașina avea să coste mult mai mult decât se estimase inițial. Babbage a proiectat apoi mașina
Mașină diferențială () [Corola-website/Science/322260_a_323589]
-
s-a dezvoltat vechea civilizație și cultură elenă (peninsula balcanică, coasta apuseană a Asiei Mici, insulele Mării Egee și mai târziu coloniile din sudul Italiei și Siciliei) au apărut și au coexistat mai multe sisteme de numerație, toate fiind de tipul "zecimal aditiv nepozițional". Până la introducerea numerației arabe (sec XV d.Hr.), vechii greci nu au avut "simboluri" dedicate "special" cifrelor, așa cum au avut alte civilizații. Ei au folosit în locul acestora (în două moduri diferite) "literele alfabetului", fiind creditați pentru două invenții
Numerația greacă () [Corola-website/Science/297443_a_298772]
-
prin intermediul grecilor. În mod curios, în multe documente se regăsesc simboluri pe care mulți le consideră a fi "simbolul vidului" : zero. Încă de la sfârșitul perioadei arhaice (700 î.Hr. - 550 î.Hr.), vechii greci utilizau alături de "sistemul de numerație alfabetic", un sistem zecimal aditiv nepozițional de concepție proprie, având aceleași caracteristici cu sistemul de numerație hieroglific cretan : exista câte un semn special pentru unitate și pentru primele patru puteri ale bazei de numerație (10). Vechii greci foloseau o serie de simboluri numerice (cunoscute
Numerația greacă () [Corola-website/Science/297443_a_298772]
-
până în anul 95 î.Hr. când a fost înlocuit de către "sistemul alfabetic". Caracterele acrofonice ("atice" și "non-atice") constituie subiectul unei recente propuneri de unicod făcute de a T.G.L. ("Thesaurus Linguae Graecae"). Sistemul acrofonic atic, apărut în vechea Atenă, era un "sistem zecimal hibrid" ("aditiv" și parțial "multiplicativ"). El folosea numai 6 simboluri care par a fi "cinci litere din alfabetul grec" alese după "inițiala" numelui grecesc al cifrei respective (excepție face cifra 1 care este reprezentată printr-o simplă linie verticală „│</font
Numerația greacă () [Corola-website/Science/297443_a_298772]
-
zece mii): │</font color> = 1, Γ</font color> ( "pi" ) = 5, Δ</font color> ( "delta") = 10, Η</font color> ( "eta" ) = 100, Χ</font color>( "xi" )= 1.000, Μ</font color> ( "mu" ) = 10.000 Este interesant de notat că acest sistem este strict zecimal cu excepția cifrei Γ</font color> (5), care provine probabil dintr-un alt sistem grec de numerația, mai vechi, în baza cinci. Pentru reprezentarea numerelor, cifrele atice sunt combinate după "principiul aditiv" și parțial după cel "multiplicativ". Nici un simbol nu se
Numerația greacă () [Corola-website/Science/297443_a_298772]
-
Tauric (Crimeea de azi), în Teba, în Karistos (insula Evia), în Epidaurus, Argos și Nemeea (estul peninsulei Peleponez), în Orchomenus, Tesphia, Argive, ș.a. În sec. VI î.Hr., în orașul-cetate Miletus din provincia antică Ionia, se dezvoltă un sistem de numerație zecimal aditiv nepozițional bazat pe 27 de semne: cele 24 de caractere ale alfabetului Ionian plus încă trei caractere arhaice provenite fie dintr-un alfabetul grec anterior, fie împrumutate dintr-un alfabet al altui popor: "digamma", "koppa" și "sampi". În mod
Numerația greacă () [Corola-website/Science/297443_a_298772]
-
științifice și tehnice, fiind produs începând cu anul 1965 într-un număr de 84 de exemplare. Putea fi programat în limbajele JAS și MOST F. Odra 1103 a fost un calculator specializat derivat din Odra 1003, conceput pentru prelucrarea datelor zecimal în strânsă cooperare cu mașinile analitice. A fost produs între 1967 și 1969 într-un număr de 64 de exemplare. Odra 1204 a fost ultimul model din serie produs cu tehnologie poloneză. Computerul a fost primul calculator polonez microprogramabil, cu
Odra (calculator) () [Corola-website/Science/330609_a_331938]
-
pot efectua cu ajutorul riglei de calcul, sunt următoarele:<br> — înmulțirea,<br> — împărțirea,<br> — ridicarea la pătrat,<br> — extragerea rădăcinii pătrate,<br> — ridicarea la cub,<br> — extragerea rădăcinii cubice,<br> — calculul unor expresii de forma "a" sau "a",<br> — calculul logaritmului zecimal al unui număr,<br> — calculul numărului al cărui logaritm zecimal este dat,<br> — calculul logaritmului natural al unui număr,<br> — calculul unor expresii de forma "a", "a", "e" etc, folosind scara exponențială,<br> — calculul suprafeței cercului,<br> — calculul diametrului cercului
Riglă de calcul () [Corola-website/Science/326712_a_328041]
-
br> — împărțirea,<br> — ridicarea la pătrat,<br> — extragerea rădăcinii pătrate,<br> — ridicarea la cub,<br> — extragerea rădăcinii cubice,<br> — calculul unor expresii de forma "a" sau "a",<br> — calculul logaritmului zecimal al unui număr,<br> — calculul numărului al cărui logaritm zecimal este dat,<br> — calculul logaritmului natural al unui număr,<br> — calculul unor expresii de forma "a", "a", "e" etc, folosind scara exponențială,<br> — calculul suprafeței cercului,<br> — calculul diametrului cercului când se cunoaște aria suprafeței acestuia,<br> — calculul funcțiilor trigonometrice
Riglă de calcul () [Corola-website/Science/326712_a_328041]
-
și cinci unități. Considerarea unităților de diferite ordine constituie sistema noastră de numerațiune; numărul zece, care arată câte unități de un oarecare ordin trebuiesc pentru a forma unitatea de ordinul următor se numește baza sistemului, și sistemul se numește sistem zecimal. Petrescu Pag. 13 al. 1 - Adunarea este o operație care are drept obiect a reuni toate unitățile cuprinse în mai multe numere date de acelaș fel în un singur număr numit sumă sau total. Petrescu Pag. 63 - 72. Numim mărime
Opere 10 by Mihai Eminescu [Corola-publishinghouse/Imaginative/295588_a_296917]
-
11 Funcții matematice în virgulă mobilă Din această categorie funcțiile trigonometrice, funcțiile de calcul algebric astfel: Funcții trigonometric propriu-zise: ACOS, ASIN, ATAN, COS, SIN, TAN. Funcții trigonometric hiperbolice: COSH, SINH, TANH. Funcții algebrice: EXP (exponențială), LOG (logaritm natural), LOG10 (logaritm zecimal), SQRT (radical). 3.12 Instrucțiuni de lucru cu șiruri de caractere Instrucțiunile pentru șiruri de caractere pot fi clasificate astfel: instrucțiune de deplasare (SHIFT); instrucțiune de înlocuire (REPLACE); instrucțiune de conversie (TRANSLATE); instrucțiune de suprascriere (OVERLAY); instrucțiune de căutare (SEARCH
APLICAŢII INTEGRATE PENTRU ÎNTREPRINDERI Note de curs - laborator by Culea George, Găbureanu Cătălin () [Corola-publishinghouse/Science/285_a_543]
-
fiecare din cifrele 7 din numărul 777 are altă valoare: 7x100, 7x10 și 7x1). În orice sistem de numerație în care există, cifra „0” indică același lucru: absența unei valori. Originea acestor cuvinte este legată de sistemul de numerație pozițional zecimal și setul de cifre așa-zise „arabe” (0, 1, ..., 9), folosite azi în aproape toată lumea pentru a reprezenta în scris numerele. În realitate ele sunt originare din India, unde conceptul și semnele pentru 0 și celelalte 9 cifre erau cunoscute
Cifră () [Corola-website/Science/297146_a_298475]
-
cum putea un englez de treabă, fie el și templier, și mai ales În vremurile alea În care informațiile circulau tot cu Încetinitorul, să țină cont de lucrul ăsta? Ei conduc și azi mașina pe stânga și ignoră sistemul metric zecimal... Așadar, englezii se prezintă la Refugiu pe 23 iunie al lor, care pentru francezi e de-acum 3 iulie. Acum presupuneți că Întâlnirea nu trebuia să se realizeze cu surle și tobe, era o Întâlnire pe furiș, În colțișorul stabilit
[Corola-publishinghouse/Imaginative/2111_a_3436]
-
apariției, numărul de volume, numărul de pagini, numărul ISBN sau ISSN, precum și un număr de cuvinte cheie. Fișele bibliografice sunt sistematizate în biblioteci în două cataloage: catalogul alfabetic (după numele autorilor și titluri anonime în ordine alfabetică) și catalogul sistematic zecimal (care folosește clasificarea zecimală universală CZU). În lucrarea [26], sunt prezentate principiile căutării de lucrări atunci când nu se cunosc publicațiile existente în bibliotecă pe o anumită temă, cu atât mai puțin autorii. În acest caz un rol important revine catalogului
Creativitate : fundamente, secrete şi strategii by Georgel Paicu () [Corola-publishinghouse/Science/690_a_1152]
-
care folosește clasificarea zecimală universală CZU). În lucrarea [26], sunt prezentate principiile căutării de lucrări atunci când nu se cunosc publicațiile existente în bibliotecă pe o anumită temă, cu atât mai puțin autorii. În acest caz un rol important revine catalogului zecimal (catalogul pe domenii) precum și catalogului informatizat (catalogul online) care lansează căutarea după cuvinte cheie. În categoria informațiilor disponibile pe Internet distingem: * Platforme colecții de reviste științifice în format text integral, livrate prin intermediul Internetului. Exemple: Science Direct (oferă acces la text
Creativitate : fundamente, secrete şi strategii by Georgel Paicu () [Corola-publishinghouse/Science/690_a_1152]
-
găsește o concentrație de fier mai mare decât în alte zarzavaturi. Mitul spanacului ca element super-fortificant, datorită conținutului exorbitant de fier, a fost generat de o eroare de dactilografiere, făcută de o secretară distrată, care atunci când a copiat un număr zecimal a pus virgula cu o cifră spre dreapta. Întâmplarea s-a petrecut la sfârșitul sec. XIX, dar eroarea s-a propagat prin tipar până-n sec. XX, după care a fost larg popularizată prin cinematograf și televiziune. Totuși, majoritatea cercetărilor nu
De la Macro la Microunivers by Irina Frunză () [Corola-publishinghouse/Science/779_a_1755]
-
PATA sau SATA), ceas de timp real, circuite de management a consumului, memoria BIOS nevolatilă, interfața audio. Opțional southbridge mai poate conține interfața Ethernet, USB, codec audio și Firewire. 3 NOȚIUNI DE ARITMETICĂ BINARĂ Mintea umană este familiarizată cu sistemul zecimal de numerație, acest lucru datorându-se în mare măsură celor zece degete de la fiecare mână. Spre deosebire de om, calculatoarele electronice operează cu numere binare. Pentru a înțelege cum funcționează acestea este necesar să înțelegem mai întâi care este corespondența între cele
Arhitectura Calculatoarelor by Cristian Zet () [Corola-publishinghouse/Science/329_a_567]
-
șir de biți. Definiție: Se numește bit un simbol ce poate avea doar două valori 0 sau 1. De fapt un bit este o cifră binară, iar un șir de biți formează un număr binar. Numerele întregi exprimate în sistemul zecimal pe care le folosim uzual se pot exprima în sistemul binar (baza 2) prin astfel de șiruri de biți. Ca și la sistemul zecimal, poziția cifrei în șir determină ponderea cu care bitul intervine în expresia de calcul a numărului
Arhitectura Calculatoarelor by Cristian Zet () [Corola-publishinghouse/Science/329_a_567]
-
cifră binară, iar un șir de biți formează un număr binar. Numerele întregi exprimate în sistemul zecimal pe care le folosim uzual se pot exprima în sistemul binar (baza 2) prin astfel de șiruri de biți. Ca și la sistemul zecimal, poziția cifrei în șir determină ponderea cu care bitul intervine în expresia de calcul a numărului: Numerele reale pot fi și ele reprezentate în binar, dar aproximativ, prin trunchiere, la fel ca și în sistemul zecimal. Există mai multe moduri
Arhitectura Calculatoarelor by Cristian Zet () [Corola-publishinghouse/Science/329_a_567]
-
Ca și la sistemul zecimal, poziția cifrei în șir determină ponderea cu care bitul intervine în expresia de calcul a numărului: Numerele reale pot fi și ele reprezentate în binar, dar aproximativ, prin trunchiere, la fel ca și în sistemul zecimal. Există mai multe moduri de reprezentare ce vor fi descrise în acest capitol. Deosebit de importantă este conversia între bazele de numerație. Conversia din binar în zecimal se face folosind relația 3.2., multiplicând biții cu ponderile lor și sumând termenii
Arhitectura Calculatoarelor by Cristian Zet () [Corola-publishinghouse/Science/329_a_567]