1,265 matches
-
De-a lungul barei se pot deplasa două cursoare C și D; poziția acestora se potrivește în așa fel încât, indiferent dacă pendulul este suspendat pe muchia din A sau din B, perioadele să aibă aceeași valoare. Practic, se suspendă pendulul pe muchia de cuțit din A, apoi pe cea din B și se scoate de fiecare dată din poziția de echilibru lăsându-l liber să oscileze și, determinând perioada sa. Când, după potrivirea pozițiilor cursoarelor, se obțin perioade egale, distanța
OSCILAȚII MECANICE by AURORA AGHEORGHIESEI () [Corola-publishinghouse/Science/344_a_618]
-
se scoate de fiecare dată din poziția de echilibru lăsându-l liber să oscileze și, determinând perioada sa. Când, după potrivirea pozițiilor cursoarelor, se obțin perioade egale, distanța dintre cele două axe (mecanice, cele două muchii) reprezintă lungimea redusă a pendulului fizic. se poate determina în urma mai multor măsurători folosind un număr mare de oscilații, n, mare)r cât mai exact, rezultă că precizia valorii lui g va fi foarte mare (cu mult mai mare decât se poate obține cu ajutorul unui
OSCILAȚII MECANICE by AURORA AGHEORGHIESEI () [Corola-publishinghouse/Science/344_a_618]
-
fizic. se poate determina în urma mai multor măsurători folosind un număr mare de oscilații, n, mare)r cât mai exact, rezultă că precizia valorii lui g va fi foarte mare (cu mult mai mare decât se poate obține cu ajutorul unui pendul simplu). Se știe că momentul de inerție al unui corp de formă și densitate cunoscute este direct proporțională cu masa inertă a corpului. De exemplu, pentru un cilindru drept momentul de inerție este I =mr2/2, în care r este
OSCILAȚII MECANICE by AURORA AGHEORGHIESEI () [Corola-publishinghouse/Science/344_a_618]
-
gravifică). Raportul I/mg reprezintă chiar raportul celor două mase: inertă și grea. Însă acest raport se deduce ușor si din formula, astfel încât cunoscând T și l se determină raportul maselor, inertă și grea. S-au efectuat numeroase experiențe cu pendule Kater, identice ca formă și dimensiuni, dar din substanțe diferite. De fiecare dată sa obținut aceeași valoare pentru raportul I/mg, ceea ce înseamnă că valoarea raportului dintre cele două mase nu depinde de natura corpului, adică de substanța din care
OSCILAȚII MECANICE by AURORA AGHEORGHIESEI () [Corola-publishinghouse/Science/344_a_618]
-
și grea, a fost demonstrată experimental de mai mulți oameni de știință. De exemplu, Newton a imaginat o experiență pentru verificarea directă a echivalenței aparente dintre masa inertă și masa grea. Admițând egalitatea acestor mase se obține formula cunoscută a pendulului simplu. Dar, în cazul în care raportul maselor depinde de natura corpurilor, evident perioada T va depinde de natura substanțelor ce alcătuiesc pendulele. În experiența sa, Newton a confecționat un pendul în care a folosit o bilă formată dintr-o
OSCILAȚII MECANICE by AURORA AGHEORGHIESEI () [Corola-publishinghouse/Science/344_a_618]
-
echivalenței aparente dintre masa inertă și masa grea. Admițând egalitatea acestor mase se obține formula cunoscută a pendulului simplu. Dar, în cazul în care raportul maselor depinde de natura corpurilor, evident perioada T va depinde de natura substanțelor ce alcătuiesc pendulele. În experiența sa, Newton a confecționat un pendul în care a folosit o bilă formată dintr-o pătură sferică foarte subțire (de fapt, o bilă goală) și în ea a introdus diferite substanțe având mase egale, determinate prin cântărire cu
OSCILAȚII MECANICE by AURORA AGHEORGHIESEI () [Corola-publishinghouse/Science/344_a_618]
-
Admițând egalitatea acestor mase se obține formula cunoscută a pendulului simplu. Dar, în cazul în care raportul maselor depinde de natura corpurilor, evident perioada T va depinde de natura substanțelor ce alcătuiesc pendulele. În experiența sa, Newton a confecționat un pendul în care a folosit o bilă formată dintr-o pătură sferică foarte subțire (de fapt, o bilă goală) și în ea a introdus diferite substanțe având mase egale, determinate prin cântărire cu o bună balanță. În aceste condiții forța exercitată
OSCILAȚII MECANICE by AURORA AGHEORGHIESEI () [Corola-publishinghouse/Science/344_a_618]
-
care a folosit o bilă formată dintr-o pătură sferică foarte subțire (de fapt, o bilă goală) și în ea a introdus diferite substanțe având mase egale, determinate prin cântărire cu o bună balanță. În aceste condiții forța exercitată asupra pendulului era aceeași, pentru același unghi. Cum forma exterioară a bilei rămânea neschimbată, frecarea cu aerul (rezistența opusă de acesta) era aceeași. Când schimba o substanță cu alta în interiorul bilei, numai o diferență a maselor inerte ar fi putut determina o
OSCILAȚII MECANICE by AURORA AGHEORGHIESEI () [Corola-publishinghouse/Science/344_a_618]
-
neschimbată, frecarea cu aerul (rezistența opusă de acesta) era aceeași. Când schimba o substanță cu alta în interiorul bilei, numai o diferență a maselor inerte ar fi putut determina o diferență de accelerație. Dar o astfel de diferență ar influența perioada pendulului. În toate cazurile, însă, Newton obține aceeași perioadă a pendulului dată de relație. De aceea, el a conchis că cele două mase, inertă și grea, cu o precizie de 1/1000 sunt echivalente. Ulterior experiențele au fost reluate de Friederik
OSCILAȚII MECANICE by AURORA AGHEORGHIESEI () [Corola-publishinghouse/Science/344_a_618]
-
Când schimba o substanță cu alta în interiorul bilei, numai o diferență a maselor inerte ar fi putut determina o diferență de accelerație. Dar o astfel de diferență ar influența perioada pendulului. În toate cazurile, însă, Newton obține aceeași perioadă a pendulului dată de relație. De aceea, el a conchis că cele două mase, inertă și grea, cu o precizie de 1/1000 sunt echivalente. Ulterior experiențele au fost reluate de Friederik Wilhelm Bessel (1784-1846), astronom german, obtinând aceleași rezultate ca și
OSCILAȚII MECANICE by AURORA AGHEORGHIESEI () [Corola-publishinghouse/Science/344_a_618]
-
Wilhelm Bessel (1784-1846), astronom german, obtinând aceleași rezultate ca și Newton, dar cu o precizie mult mai mare : 1/60 000. Alte experiențe efectuate mult mai târziu au confirmat definitiv egalitatea celor două mase : inertă și grea. I.9.2. Pendulul cicloidal. Huygens a arătat că un pendul simplu poate fi de terminat să descrie o cicloidă și, în aceste condiții, oscilațiile sunt izocrone pentru orice amplitudini. De aceea, un astfel de pendul poartă denumirea de pendul cicloidal. Pentru ca pendulul simplu
OSCILAȚII MECANICE by AURORA AGHEORGHIESEI () [Corola-publishinghouse/Science/344_a_618]
-
rezultate ca și Newton, dar cu o precizie mult mai mare : 1/60 000. Alte experiențe efectuate mult mai târziu au confirmat definitiv egalitatea celor două mase : inertă și grea. I.9.2. Pendulul cicloidal. Huygens a arătat că un pendul simplu poate fi de terminat să descrie o cicloidă și, în aceste condiții, oscilațiile sunt izocrone pentru orice amplitudini. De aceea, un astfel de pendul poartă denumirea de pendul cicloidal. Pentru ca pendulul simplu să descrie o cicloidă se folosesc două
OSCILAȚII MECANICE by AURORA AGHEORGHIESEI () [Corola-publishinghouse/Science/344_a_618]
-
două mase : inertă și grea. I.9.2. Pendulul cicloidal. Huygens a arătat că un pendul simplu poate fi de terminat să descrie o cicloidă și, în aceste condiții, oscilațiile sunt izocrone pentru orice amplitudini. De aceea, un astfel de pendul poartă denumirea de pendul cicloidal. Pentru ca pendulul simplu să descrie o cicloidă se folosesc două limitatoare mărginite de câte un arc OC, respectiv, OD (fig.19). Arcele OC și OD sunt cuprinse în jumătățile de cicloidă, OA respectiv OB. în timpul
OSCILAȚII MECANICE by AURORA AGHEORGHIESEI () [Corola-publishinghouse/Science/344_a_618]
-
grea. I.9.2. Pendulul cicloidal. Huygens a arătat că un pendul simplu poate fi de terminat să descrie o cicloidă și, în aceste condiții, oscilațiile sunt izocrone pentru orice amplitudini. De aceea, un astfel de pendul poartă denumirea de pendul cicloidal. Pentru ca pendulul simplu să descrie o cicloidă se folosesc două limitatoare mărginite de câte un arc OC, respectiv, OD (fig.19). Arcele OC și OD sunt cuprinse în jumătățile de cicloidă, OA respectiv OB. în timpul când oscilează firul se
OSCILAȚII MECANICE by AURORA AGHEORGHIESEI () [Corola-publishinghouse/Science/344_a_618]
-
2. Pendulul cicloidal. Huygens a arătat că un pendul simplu poate fi de terminat să descrie o cicloidă și, în aceste condiții, oscilațiile sunt izocrone pentru orice amplitudini. De aceea, un astfel de pendul poartă denumirea de pendul cicloidal. Pentru ca pendulul simplu să descrie o cicloidă se folosesc două limitatoare mărginite de câte un arc OC, respectiv, OD (fig.19). Arcele OC și OD sunt cuprinse în jumătățile de cicloidă, OA respectiv OB. în timpul când oscilează firul se înfășoară pe arcele
OSCILAȚII MECANICE by AURORA AGHEORGHIESEI () [Corola-publishinghouse/Science/344_a_618]
-
fig.19). Arcele OC și OD sunt cuprinse în jumătățile de cicloidă, OA respectiv OB. în timpul când oscilează firul se înfășoară pe arcele OC și OD și, datorită proprietăților geometrice ale cicloidei, firul descrie cicloida AB. Pentru amplitudini mici, perioada pendulului cicloidal coincide cu perioada pendulului simplu a cărui lungime este l=2h. În concluzie, pendulul cicloidal se obține dintr un pendul simplu cu unele modificări, iar oscilațiile lui sunt izocrone pentru orice amplitudini, perioada fiind dată de relația . 1.9
OSCILAȚII MECANICE by AURORA AGHEORGHIESEI () [Corola-publishinghouse/Science/344_a_618]
-
OD sunt cuprinse în jumătățile de cicloidă, OA respectiv OB. în timpul când oscilează firul se înfășoară pe arcele OC și OD și, datorită proprietăților geometrice ale cicloidei, firul descrie cicloida AB. Pentru amplitudini mici, perioada pendulului cicloidal coincide cu perioada pendulului simplu a cărui lungime este l=2h. În concluzie, pendulul cicloidal se obține dintr un pendul simplu cu unele modificări, iar oscilațiile lui sunt izocrone pentru orice amplitudini, perioada fiind dată de relația . 1.9.3.Balansierul Balansierul care intră
OSCILAȚII MECANICE by AURORA AGHEORGHIESEI () [Corola-publishinghouse/Science/344_a_618]
-
în timpul când oscilează firul se înfășoară pe arcele OC și OD și, datorită proprietăților geometrice ale cicloidei, firul descrie cicloida AB. Pentru amplitudini mici, perioada pendulului cicloidal coincide cu perioada pendulului simplu a cărui lungime este l=2h. În concluzie, pendulul cicloidal se obține dintr un pendul simplu cu unele modificări, iar oscilațiile lui sunt izocrone pentru orice amplitudini, perioada fiind dată de relația . 1.9.3.Balansierul Balansierul care intră în contrucția ceasornicelor este un pendul fizic ce efectuează oscilații
OSCILAȚII MECANICE by AURORA AGHEORGHIESEI () [Corola-publishinghouse/Science/344_a_618]
-
pe arcele OC și OD și, datorită proprietăților geometrice ale cicloidei, firul descrie cicloida AB. Pentru amplitudini mici, perioada pendulului cicloidal coincide cu perioada pendulului simplu a cărui lungime este l=2h. În concluzie, pendulul cicloidal se obține dintr un pendul simplu cu unele modificări, iar oscilațiile lui sunt izocrone pentru orice amplitudini, perioada fiind dată de relația . 1.9.3.Balansierul Balansierul care intră în contrucția ceasornicelor este un pendul fizic ce efectuează oscilații de rotație. Axa de rotație a
OSCILAȚII MECANICE by AURORA AGHEORGHIESEI () [Corola-publishinghouse/Science/344_a_618]
-
l=2h. În concluzie, pendulul cicloidal se obține dintr un pendul simplu cu unele modificări, iar oscilațiile lui sunt izocrone pentru orice amplitudini, perioada fiind dată de relația . 1.9.3.Balansierul Balansierul care intră în contrucția ceasornicelor este un pendul fizic ce efectuează oscilații de rotație. Axa de rotație a pendulului trece prin centrul lui de greutate C, iar forța directoare este dată de tensiunea elastică a unei spirale de oțel S (,,părul’’, cum spun ceasornicarii, pentru că la primele ceasuri
OSCILAȚII MECANICE by AURORA AGHEORGHIESEI () [Corola-publishinghouse/Science/344_a_618]
-
simplu cu unele modificări, iar oscilațiile lui sunt izocrone pentru orice amplitudini, perioada fiind dată de relația . 1.9.3.Balansierul Balansierul care intră în contrucția ceasornicelor este un pendul fizic ce efectuează oscilații de rotație. Axa de rotație a pendulului trece prin centrul lui de greutate C, iar forța directoare este dată de tensiunea elastică a unei spirale de oțel S (,,părul’’, cum spun ceasornicarii, pentru că la primele ceasuri era făcut din păr de porc). Această spirală se strânge și
OSCILAȚII MECANICE by AURORA AGHEORGHIESEI () [Corola-publishinghouse/Science/344_a_618]
-
iar pentru celelalte părți distanța fața de ax scade. Astfel, raza medie se menține constantă și deci și momentul de inerție. Ca urmare, perioada T se păstrează constantă și mersul ceasornicului este mai exact. El reprezintă un caz interesant de pendul fizic și consta dintr-o bară mobilă m jurul unui ax orizontal, care trece prin punctul O, având la extremitatea inferioară un corp de masă fixă M0 și unul mobil de masă M1 la extremitatea superioara. M1 poate culisa în
OSCILAȚII MECANICE by AURORA AGHEORGHIESEI () [Corola-publishinghouse/Science/344_a_618]
-
până la fereastra casei unde fosta-i nevastă, adormită lângă ibovnic, tresare în somn și alungă cu gesturi inconștiente fantomele trecutului. Ema din Talionul, înșelată de amant, hotărăște să se sinucidă în brațele acestuia, decizia fatală fiind pecetluită de bătaia unei „pendule sepulhrale” instalate într-un „sarcofag de abanos”. În Treptele somnului personajul descoperă într-un dulap un flacon cu pastile de otravă; împins de o curiozitate morbidă, le încearcă în repetate rânduri gustul, ajungând să fie chinuit de coșmaruri în care
VINEA. In: Dicționarul General al Literaturii Române () [Corola-publishinghouse/Science/290575_a_291904]
-
lui Antihrist”. Toate războaiele mondiale, Războiul Rece și căderea comunismului au fost plănuite și conduse din umbră de „iluminați” și francmasoni. Cultura de masă a fost „îmbogățită” și cu o abundentă literatură anticreștină. Capodoperele lui Umberto Eco Numele trandafirului și Pendulul lui Foucault dezvăluie atât „tainele satanice” ale catolicilor, cât și pe cele „diavolești” ale templierilor, francmasonilor, iluminaților și iacobinilor. Cărțile lui Dan Brown se mulțumesc cu dezvăluiri senzaționale despre viața de familist a lui Iisus Hristos. În fine, noua cultură
Teoria generală a curriculumului educațional by Ion Negreț-Dobridor () [Corola-publishinghouse/Science/2254_a_3579]
-
dintre cărțile sale au fost distinse cu Premiul Societății Scriitorilor Români (1932) și cu Premiul revistei „Argeș” (1971, 1984). M. cântă în versuri delicate, în ton domol, cadrul domestic, interiorul desuet provincial (elemente de recuzită: malacoafe, uniforme vechi, trandafiri, policandru, pendul), apoi peisajul, umanizat, al grădinilor patriarhale (cu păuni și alte orătănii, cu arbori și flori, mai ales crini și trandafiri) și al împrejurimilor târgului de sub munte, cu zile ploioase sau însorite, vegetație, cai, mărunte sălbăticiuni etc. Cele mai multe dintre poezii sunt
MOSANDREI. In: Dicționarul General al Literaturii Române () [Corola-publishinghouse/Science/288259_a_289588]