953 matches
-
economice un alt tip de memorie : memorie flash. Memoria EEPROM este formată dintr-o matrice de celule de memorie care, la rândul lor, sunt formate din perechi de tranzistori ce au între ei un strat subțire de oxid izolator. Un tranzistor este numit poartă flotantă ("floating gate"), iar celălalt poartă de control ("control gate"). Memoria EEPROM poate fi ștearsă și reprogramată (rescrisă) în mod repetat prin aplicarea unei tensiuni mai mari decât cea generată de circuitul extern sau intern, în cazul
EEPROM () [Corola-website/Science/314027_a_315356]
-
Întreprinderea Electronică - București, ca director, transformând o modestă fabrică (Radio Popular) în prima întreprindere electronică modernă din țară - Uzinele "Electronica", (servind drept pivot al noii industrii electronice) cu sectoarele: componente electronice (devenit ulterior IPRS-Băneasa); aparate de radio cu tuburi și tranzistoare; televizoare cu tuburi și tranzistoare; aparatură electronică militară; fabricate pentru prima oară în România, inclusiv în colaborare tehnologică cu întreprinderi din Franța, Japonia, Ungaria, Republica Cehă, Polonia și Rusia. În perioada 1964-1969 lucrează la Institutul de Cercetări și Proiectări pentru
Dumitru Felician Lăzăroiu () [Corola-website/Science/306731_a_308060]
-
transformând o modestă fabrică (Radio Popular) în prima întreprindere electronică modernă din țară - Uzinele "Electronica", (servind drept pivot al noii industrii electronice) cu sectoarele: componente electronice (devenit ulterior IPRS-Băneasa); aparate de radio cu tuburi și tranzistoare; televizoare cu tuburi și tranzistoare; aparatură electronică militară; fabricate pentru prima oară în România, inclusiv în colaborare tehnologică cu întreprinderi din Franța, Japonia, Ungaria, Republica Cehă, Polonia și Rusia. În perioada 1964-1969 lucrează la Institutul de Cercetări și Proiectări pentru Industria Electrotehnică (ICPE) - București, ca
Dumitru Felician Lăzăroiu () [Corola-website/Science/306731_a_308060]
-
localitatea Murray Hill, New Jersey, în SUA, dar organizația deține sedii de cercetare și dezvoltare în toată lumea. La apogeu, constituia principalul centru de felul său, și a dezvoltat o serie largă de tehnologii revoluționare, printre care se numără astronomia radio, tranzistorul, laserul, teoria informației, sistemul de operare UNIX, și limbajul de programare C. Șase Premii Nobel au fost acordate pentru lucrări efectuate în cadrul Laboratoarelor Bell:
Laboratoarele Bell () [Corola-website/Science/313139_a_314468]
-
a cărui rezistivitate este cuprinsă între cea a conductoarelor și izolatoarelor. Un câmp electric poate schimba rezistivitatea semiconductorilor. Dispozitivele fabricate din materiale semiconductoare sunt baza electronicii moderne, fiind părți componente în radiouri, computere, telefoane și multe altele. Dispozitivele semiconductoare sunt: tranzistorul, celulele solare, mai multe tipuri de diode, inclusiv dioda luminiscenta și circuit integrat. fotovoltaice sunt dispozitive semiconductoare care transformă energia luminii în energie electrică. Într-un conductor metalic, curentul este reprezentat de fluxul de electroni. Într-un semiconductor curentul este
Semiconductor () [Corola-website/Science/317120_a_318449]
-
de tip p și de tip n; spațiul dintre aceste regiuni sunt responsabile de comportamentul electric. Unele proprietăți ale materialelor semiconductoare au fost observate de la jumatatea secolului XIX până la prima decadă a secolului XX. Dezvoltarea fizicii cuantice a permis dezvoltarea tranzistorilor în 1947. Deși unele elemente pure și multi compuși au proprietăți semiconductoare, siliciul, germaniul și compuși ai galiului sunt cele mai folosite în dispozitivele electrice. Elementele aproape de “scară metalelor” în sistemul periodic al elementelor sunt de obicei folosite în semiconductori
Semiconductor () [Corola-website/Science/317120_a_318449]
-
partea mai puțin semnificativă de adrese sau date în timpul accesului la programul extern și la datele din memorie. Portul 0 este de asemenea cel care primește codul în timpul programării Flash și dă ca rezultat biții în urma programului de verificare. Închiderea tranzistorului este obligatorie pe perioada verificării programului. Port 1 (1-8): Portul 1 este de asemenea un port bidirecțional de intrare/ieșire având pull-up intern(trazistorul este automat închis). Buferele de ieșire ale portului 1 pot suporta 4 intrări TTL. Când portul
AT89S52 () [Corola-website/Science/320962_a_322291]
-
1-8): Portul 1 este de asemenea un port bidirecțional de intrare/ieșire având pull-up intern(trazistorul este automat închis). Buferele de ieșire ale portului 1 pot suporta 4 intrări TTL. Când portul 1 este înscris cu valoarea 1 logic, adică tranzistorul este închis, putem utiliza portul pentru citire, altfel, pentru cazul în care tranzistorul este deschis utilizăm portul pentru scriere. Portul 1 primește de asemenea partea mai puțin semnificativă a biților adresei în timpul programării și verificării Flash. În plus, pinii 0
AT89S52 () [Corola-website/Science/320962_a_322291]
-
pull-up intern(trazistorul este automat închis). Buferele de ieșire ale portului 1 pot suporta 4 intrări TTL. Când portul 1 este înscris cu valoarea 1 logic, adică tranzistorul este închis, putem utiliza portul pentru citire, altfel, pentru cazul în care tranzistorul este deschis utilizăm portul pentru scriere. Portul 1 primește de asemenea partea mai puțin semnificativă a biților adresei în timpul programării și verificării Flash. În plus, pinii 0 și 1 ai portului 1, pot fi configurați ca timer-e și counter-e, iar
AT89S52 () [Corola-website/Science/320962_a_322291]
-
pinii 5, 6, 7 sunt utilizați pentru Interfața de Programare. Port 2 (21-28): Portul 2 este, de asemenea, un port bidirecțional de intrare/iețire pe 8 biți cu pull-up intern. Având același mod de funcționare ca și portul 1, în raport cu tranzistorul existent. Portul 2 este cel care ne da biții cei mai semnificativi ai adresei in timpul extragerii din memoria externă și în timpul accesului la memoria externă de date care utilizează adrese de 16 biți. În acest mod de utilizare, Port
AT89S52 () [Corola-website/Science/320962_a_322291]
-
mașinile inginerului german Zuse (prima mașină Turing-completă) și mainframe-ul ENIAC (primul calculator generic). Primul calculator cu program stocat, funcționând în sistemul binar, Turing-complet și construit exclusiv din componente electronice a fost Manchester Small-Scale Experimental Machine, pornit în iunie 1948. Inventarea tranzistorului a declanșat o perioadă în care calculatoarele, la început uriașe, scumpe și dificil de utilizat, au început să evolueze în sensul miniaturizării, al reducerii costurilor de producție și utilizare și al simplificării programării; în paralel cu unitățile de efectuare a
Istoria mașinilor de calcul () [Corola-website/Science/315303_a_316632]
-
calculatorul de fabricație britanică ANITA Mk.VII, care utiliza un afișaj cu tuburi Nixie și 177 de tiratroane miniaturizate. În iunie 1963, Friden a introdus mașina EC-130 cu patru funcții. Aceasta costa 2200 de dolari și fusese proiectată folosind numai tranzistoare, avea o capacitate de 13 digiți și un afișaj CRT de , și a introdus forma poloneză inversă. Modelul ulterior EC-132 a adăugat funcționalitatea de calcul a rădăcinii pătrate și cea a inversării funcțiilor. În 1965, Laboratoarele Wang au produs LOCI-2
Istoria mașinilor de calcul () [Corola-website/Science/315303_a_316632]
-
de date și costa de dolari pe megaoctet. La nivelul anului 2008, unitățile de stocare pe suport magnetic, sub formă de hard diskuri, costau mai puțin de o cincizecime de cent pe megaoctet. În a doua jumătate a anilor 1950, tranzistoarele bipolare (TBIP) au înlocuit tuburile electronice. Utilizarea lor a dat naștere calculatoarelor de a doua generație. Inițial, se credea că se vor produce și se vor utiliza foarte puține calculatoare la nivel mondial. Aceasta se datora dimensiunilor, costurilor, și priceperii
Istoria mașinilor de calcul () [Corola-website/Science/315303_a_316632]
-
naștere calculatoarelor de a doua generație. Inițial, se credea că se vor produce și se vor utiliza foarte puține calculatoare la nivel mondial. Aceasta se datora dimensiunilor, costurilor, și priceperii necesare pentru a le folosi și pentru a interpreta rezultatele. Tranzistoarele au redus masiv dimensiunea calculatoarelor, costul inițial și cel de operare. Tranzistoarele bipolare au fost inventate în 1947 și americanii John Bardeen, Walter Brattain și William Shockley au primit în 1956 Premiul Nobel pentru Fizică pentru această realizare. Dacă prin
Istoria mașinilor de calcul () [Corola-website/Science/315303_a_316632]
-
produce și se vor utiliza foarte puține calculatoare la nivel mondial. Aceasta se datora dimensiunilor, costurilor, și priceperii necesare pentru a le folosi și pentru a interpreta rezultatele. Tranzistoarele au redus masiv dimensiunea calculatoarelor, costul inițial și cel de operare. Tranzistoarele bipolare au fost inventate în 1947 și americanii John Bardeen, Walter Brattain și William Shockley au primit în 1956 Premiul Nobel pentru Fizică pentru această realizare. Dacă prin joncțiunea emitor-bază a unui tranzistor bipolar nu circulă curent, atunci nu circulă
Istoria mașinilor de calcul () [Corola-website/Science/315303_a_316632]
-
calculatoarelor, costul inițial și cel de operare. Tranzistoarele bipolare au fost inventate în 1947 și americanii John Bardeen, Walter Brattain și William Shockley au primit în 1956 Premiul Nobel pentru Fizică pentru această realizare. Dacă prin joncțiunea emitor-bază a unui tranzistor bipolar nu circulă curent, atunci nu circulă curent nici între colector și emitor (iar tranzistorul este blocat). Dacă circulă un curent suficient de mare prin joncțiunea bază-emitor, trece curent și între emitor și colector (tranzistorul fiind saturat). Saturația sau blocarea
Istoria mașinilor de calcul () [Corola-website/Science/315303_a_316632]
-
americanii John Bardeen, Walter Brattain și William Shockley au primit în 1956 Premiul Nobel pentru Fizică pentru această realizare. Dacă prin joncțiunea emitor-bază a unui tranzistor bipolar nu circulă curent, atunci nu circulă curent nici între colector și emitor (iar tranzistorul este blocat). Dacă circulă un curent suficient de mare prin joncțiunea bază-emitor, trece curent și între emitor și colector (tranzistorul fiind saturat). Saturația sau blocarea unui tranzistor reprezintă cifrele binare 0 și 1. Prin comparație cu tuburile electronice, tranzistoarele prezintă
Istoria mașinilor de calcul () [Corola-website/Science/315303_a_316632]
-
prin joncțiunea emitor-bază a unui tranzistor bipolar nu circulă curent, atunci nu circulă curent nici între colector și emitor (iar tranzistorul este blocat). Dacă circulă un curent suficient de mare prin joncțiunea bază-emitor, trece curent și între emitor și colector (tranzistorul fiind saturat). Saturația sau blocarea unui tranzistor reprezintă cifrele binare 0 și 1. Prin comparație cu tuburile electronice, tranzistoarele prezintă numeroase avantaje: au costuri de fabricație mult mai mici și sunt mult mai rapide, comutarea între stările de 1 și
Istoria mașinilor de calcul () [Corola-website/Science/315303_a_316632]
-
nu circulă curent, atunci nu circulă curent nici între colector și emitor (iar tranzistorul este blocat). Dacă circulă un curent suficient de mare prin joncțiunea bază-emitor, trece curent și între emitor și colector (tranzistorul fiind saturat). Saturația sau blocarea unui tranzistor reprezintă cifrele binare 0 și 1. Prin comparație cu tuburile electronice, tranzistoarele prezintă numeroase avantaje: au costuri de fabricație mult mai mici și sunt mult mai rapide, comutarea între stările de 1 și 0 consumând un timp de ordinul micro-
Istoria mașinilor de calcul () [Corola-website/Science/315303_a_316632]
-
iar tranzistorul este blocat). Dacă circulă un curent suficient de mare prin joncțiunea bază-emitor, trece curent și între emitor și colector (tranzistorul fiind saturat). Saturația sau blocarea unui tranzistor reprezintă cifrele binare 0 și 1. Prin comparație cu tuburile electronice, tranzistoarele prezintă numeroase avantaje: au costuri de fabricație mult mai mici și sunt mult mai rapide, comutarea între stările de 1 și 0 consumând un timp de ordinul micro- sau nanosecundelor. Volumul tranzistoarelor era de ordinul milimetrilor cubi, prin comparație cu
Istoria mașinilor de calcul () [Corola-website/Science/315303_a_316632]
-
0 și 1. Prin comparație cu tuburile electronice, tranzistoarele prezintă numeroase avantaje: au costuri de fabricație mult mai mici și sunt mult mai rapide, comutarea între stările de 1 și 0 consumând un timp de ordinul micro- sau nanosecundelor. Volumul tranzistoarelor era de ordinul milimetrilor cubi, prin comparație cu tuburile electronice de ordinul centimetrilor cubi. Temperatura mai joasă de funcționare a tranzistoarelor le conferă o fiabilitate mai mare, prin comparație cu tuburile electronice. Calculatoarele cu tranzistoare puteau acum să fie dotate
Istoria mașinilor de calcul () [Corola-website/Science/315303_a_316632]
-
mult mai rapide, comutarea între stările de 1 și 0 consumând un timp de ordinul micro- sau nanosecundelor. Volumul tranzistoarelor era de ordinul milimetrilor cubi, prin comparație cu tuburile electronice de ordinul centimetrilor cubi. Temperatura mai joasă de funcționare a tranzistoarelor le conferă o fiabilitate mai mare, prin comparație cu tuburile electronice. Calculatoarele cu tranzistoare puteau acum să fie dotate cu zeci de mii de circuite logice binare într-un spațiu relativ compact. Calculatoarele de a doua generație erau compuse dintr-
Istoria mașinilor de calcul () [Corola-website/Science/315303_a_316632]
-
ordinul micro- sau nanosecundelor. Volumul tranzistoarelor era de ordinul milimetrilor cubi, prin comparație cu tuburile electronice de ordinul centimetrilor cubi. Temperatura mai joasă de funcționare a tranzistoarelor le conferă o fiabilitate mai mare, prin comparație cu tuburile electronice. Calculatoarele cu tranzistoare puteau acum să fie dotate cu zeci de mii de circuite logice binare într-un spațiu relativ compact. Calculatoarele de a doua generație erau compuse dintr-un mare număr de plăci cu cablaje imprimate, cum ar fi IBM Standard Modular
Istoria mașinilor de calcul () [Corola-website/Science/315303_a_316632]
-
sau bistabili. Un calculator din a doua generație, IBM 1401, a reușit să câștige aproape o treime din piața mondială de tehnică de calcul. IBM a instalat peste o sută de mii de 1401 între 1960 și 1964. Electronica cu tranzistoare a dus la îmbunătățirea nu doar a procesoarelor, ci și a dispozitivelor periferice. IBM 350 RAMAC a fost introdus în 1956 și a fost primul hard-disk din lume. Unitățile de stocare pe disc magnetic din a doua generație de calculatoare
Istoria mașinilor de calcul () [Corola-website/Science/315303_a_316632]
-
Jack St. Clair Kilby și independent de Robert Noyce, tehnologie care a condus mai târziu la inventarea microprocesorului, de către Ted Hoff, Federico Faggin, și Stanley Mazor de la Intel. Primul procesor integrat, Intel 4004 (1971) avea , și era compus din 2300 tranzistoare; prin comparație, procesorul Pentium Pro avea și 5,5 milioane de tranzistoare. Circuitul integrat din imaginea din dreapta, un Intel 8742, este un microcontroller pe opt biți care conține o unitate centrală de procesare ce rulează la , are 128 de octeți
Istoria mașinilor de calcul () [Corola-website/Science/315303_a_316632]