3,588 matches
-
notată cu A. Protonii, neutronii șl electronii fac parte din clasa de fermioni, având spin semiîntreg. Interacțiunea nucleară forte / tare, cea mai puternică din cele patru forțe naturale ale fizicii, are rolul de a menține o coeziune în interiorul nucleului. Cromodinamica cuantică se ocupă cu studiul forței exercitate în interiorul nucleilor. Datorită scalei microscopice, pentru fizica nucleară este folosită mecanica cuantică - știința care se ocupă cu studiul fenomenelor la scară atomică. Atomii cu același număr de ordine dar cu masă atomică diferită se
Fizică nucleară () [Corola-website/Science/308913_a_310242]
-
forte / tare, cea mai puternică din cele patru forțe naturale ale fizicii, are rolul de a menține o coeziune în interiorul nucleului. Cromodinamica cuantică se ocupă cu studiul forței exercitate în interiorul nucleilor. Datorită scalei microscopice, pentru fizica nucleară este folosită mecanica cuantică - știința care se ocupă cu studiul fenomenelor la scară atomică. Atomii cu același număr de ordine dar cu masă atomică diferită se numesc izotopi, care au proprietăți chimice identice. Pe când proprietățile fizice ale izotopilor sunt diferite acestea fiind influențate de
Fizică nucleară () [Corola-website/Science/308913_a_310242]
-
utilizate în electromagnetism. Tabelul rezumă ecuațiile fundamentale ale electrodinamicii (ecuațiile lui Maxwell) și definiția câmpului electromagnetic (forța Lorentz), folosind constantele electromagnetice definite anterior. Sistemele de unități utilizate curent sunt SI (în aplicații) și sistemul Gauss (în studii teoretice); în electrodinamica cuantică acesta din urmă cedează locul sistemului raționalizat Heaviside-Lorentz. Tabelul rezumă comparația între unitățile SI și Gauss, pentru mărimile mecanice și electromagnetice de bază.
Sistemul de unități CGS în electromagnetism () [Corola-website/Science/309778_a_311107]
-
polinoame, notate de regulă cu formula 2, formează un șir polinomial ce poate fi definit prin formula Rodrigues Ele sunt ortogonale unul pe celălalt în raport cu produsul scalar dat de Șirul polinoamelor Laguerre este un șir Sheffer. Polinoamele Laguerre apar în mecanica cuantică, în partea radială a soluției ecuației Schrödinger pentru atomul cu un electron. Fizicienii folosesc adesea o definiție a polinoamelor Laguerre mai mare cu un factor de formula 5, decât definiția folosită aici. Acestea sunt primele polinoame Laguerre: Aceste polinoame pot fi
Polinoamele lui Laguerre () [Corola-website/Science/309990_a_311319]
-
generalizate: Acestea sunt uneori numite polinoame asociate Laguerre. Polinoamele Laguerre simple sunt recuperate din cele generalizate punând formula 16: Polinoamele asociate Laguerre sunt ortogonale peste formula 18 în raport cu funcția pondere formula 19: Următoarea integrală este necesară pentru tratarea atomului de hidrogen în mecanica cuantică, Polinoamele asociate Laguerre se supun următoarei ecuații diferențiale: Ele respectă următoarea relație de recurență pentru formula 23: Două alte relații de recurență utile sunt Polinomul Laguerre generalizat de gradul formula 27 este (rezultat din aplicarea teoremei lui Leibnitz pentru derivarea produsului asupra
Polinoamele lui Laguerre () [Corola-website/Science/309990_a_311319]
-
puteri a polinomului Laguerre generalizat conduce la Polinoamele Laguerre generalizate sunt legate de polinoamele Hermite: și unde formula 39 sunt polinoamele Hermite bazate pe funcția pondere formula 40, așa-numita "versiunea fizicienilor". Din acest motiv, polinoamele Laguerre generalizate apar în tratamentul oscilatorului cuantic armonic. Polinoamele Laguerre pot fi definite în termeni de funcții hipergeometrice, anume de funcții hipergeometrice confluente, ca unde formula 42 este simbolul Pochhammer (care în "acest" caz reprezintă "factorialul crescător").
Polinoamele lui Laguerre () [Corola-website/Science/309990_a_311319]
-
o stare 'respinge', atunci cuvântul este respins. Mulțimea tuturor cuvintelor acceptate de un automat este denumită 'limbajul recunoscut' de automat. În general, însă, un automat nu are întotdeauna o multime finita sau numărabila de stări. Spre exemplu, un automat finit cuantic are o multime nenumărabilă și infinită de stări, deoarece aceasta mulțime este cea a punctelor din spațiul de proiecție complex. Deci, automatul finit cuantic, cât și mașinile de stare finite, sunt cazuri speciale al unui concept general, acela de automat
Teoria automatelor () [Corola-website/Science/309336_a_310665]
-
automat nu are întotdeauna o multime finita sau numărabila de stări. Spre exemplu, un automat finit cuantic are o multime nenumărabilă și infinită de stări, deoarece aceasta mulțime este cea a punctelor din spațiul de proiecție complex. Deci, automatul finit cuantic, cât și mașinile de stare finite, sunt cazuri speciale al unui concept general, acela de automat topologic, unde mulțimea de stări este un spațiu topologic, și funcțiile de tranziție sunt obținute din mulțimea funcțiilor acelui spațiu. Automatele topologice sunt denumite
Teoria automatelor () [Corola-website/Science/309336_a_310665]
-
M-automatului cu mulțimea funcțiilor din acel spațiu. În general, un automat nu trebuie neapărat să accepte sau să respingă o intrare; o poate accepta cu o probabilitate între zero și unu. Acest lucru este iarăși ilustrat de automatul finit cuantic, care acceptă o intrare numai după o anumita probabilitate. Această idee este un caz special al unei noțiuni generale, aceea de 'automat geometric' sau 'automat metric', unde setul de stări este un spațiu metric, și limbajul recunoscut de automat este
Teoria automatelor () [Corola-website/Science/309336_a_310665]
-
a gravitației, ea reprezintă cea mai simplă teorie în acord cu datele experimentale. Totuși, teoria nu oferă răspuns la câteva dileme teoretice, cea mai fundamentală dintre acestea fiind modalitatea în care se poate unifica teoria gravitației generale cu legile mecanicii cuantice, care să conducă la o teorie completă și consistentă cu ea însăși a gravitației cuantice. Teoria lui Einstein are implicații astrofizice importante. Din ea decurge posibilitatea existenței găurilor negre — regiuni ale Universului în care spațiul și timpul sunt distorsionate într-
Teoria relativității generale () [Corola-website/Science/309426_a_310755]
-
nu oferă răspuns la câteva dileme teoretice, cea mai fundamentală dintre acestea fiind modalitatea în care se poate unifica teoria gravitației generale cu legile mecanicii cuantice, care să conducă la o teorie completă și consistentă cu ea însăși a gravitației cuantice. Teoria lui Einstein are implicații astrofizice importante. Din ea decurge posibilitatea existenței găurilor negre — regiuni ale Universului în care spațiul și timpul sunt distorsionate într-o măsură atât de pronunțată, încât nimic, nici măcar lumina, nu mai pot emerge de acolo
Teoria relativității generale () [Corola-website/Science/309426_a_310755]
-
nu fie contrazise de rezultatele observațiilor. O chestiune și mai dificilă este fizica universului dinainte de faza inflaționară, în perioada imediat următoare celei în care modelele clasice plasează singularitatea big bangului. Un răspuns complet ar necesita o teorie completă a gravitației cuantice, teorie care nu a fost încă dezvoltată. În relativitatea generală, niciun corp material nu poate ajunge din urmă sau depăși un impuls luminos. Astfel, un eveniment A nu poate influența niciun alt loc X mai înainte ca lumina (acțiunea) trimisă
Teoria relativității generale () [Corola-website/Science/309426_a_310755]
-
în speranța de a obține o mărime utilă pentru afirmațiile generale despre sistemele izolate, cum ar fi o formulare mai precisă a conjecturii inelului. Dacă relativitatea generală este considerată a fi unul dintre cei doi stâlpi ai fizicii moderne, teoria cuantică, baza înțelegerii materiei de la particule elementare la fizica stării solide, este celălalt. Totuși, întrebarea dacă pot fi conceptele teoriei cuantice reconciliate cu cele ale relativității generale rămâne deschisă. Teoriile cuantice ale câmpului clasice, care stau la baza fizicii moderne a
Teoria relativității generale () [Corola-website/Science/309426_a_310755]
-
precisă a conjecturii inelului. Dacă relativitatea generală este considerată a fi unul dintre cei doi stâlpi ai fizicii moderne, teoria cuantică, baza înțelegerii materiei de la particule elementare la fizica stării solide, este celălalt. Totuși, întrebarea dacă pot fi conceptele teoriei cuantice reconciliate cu cele ale relativității generale rămâne deschisă. Teoriile cuantice ale câmpului clasice, care stau la baza fizicii moderne a particulelor elementare, sunt definite într-un spațiu Minkowski plat, care este o aproximare excelentă atunci când se descrie comportamentul particulelor microscopice
Teoria relativității generale () [Corola-website/Science/309426_a_310755]
-
fi unul dintre cei doi stâlpi ai fizicii moderne, teoria cuantică, baza înțelegerii materiei de la particule elementare la fizica stării solide, este celălalt. Totuși, întrebarea dacă pot fi conceptele teoriei cuantice reconciliate cu cele ale relativității generale rămâne deschisă. Teoriile cuantice ale câmpului clasice, care stau la baza fizicii moderne a particulelor elementare, sunt definite într-un spațiu Minkowski plat, care este o aproximare excelentă atunci când se descrie comportamentul particulelor microscopice în câmpuri gravitaționale slabe, cum sunt cele de pe Pământ. Pentru
Teoria relativității generale () [Corola-website/Science/309426_a_310755]
-
într-un spațiu Minkowski plat, care este o aproximare excelentă atunci când se descrie comportamentul particulelor microscopice în câmpuri gravitaționale slabe, cum sunt cele de pe Pământ. Pentru a descrie situațiile în care gravitația este suficient de puternică pentru a influența materia cuantică, dar nu atât de puternică încât să necesite ea însăși cuantificarea, fizicienii au formulat teorii cuantice ale câmpului în spațiu-timp curb. Aceste teorii se bazează pe relativitatea generală clasică pentru a descrie un spațiu-timp curb de fond, și definesc o
Teoria relativității generale () [Corola-website/Science/309426_a_310755]
-
în câmpuri gravitaționale slabe, cum sunt cele de pe Pământ. Pentru a descrie situațiile în care gravitația este suficient de puternică pentru a influența materia cuantică, dar nu atât de puternică încât să necesite ea însăși cuantificarea, fizicienii au formulat teorii cuantice ale câmpului în spațiu-timp curb. Aceste teorii se bazează pe relativitatea generală clasică pentru a descrie un spațiu-timp curb de fond, și definesc o teorie cuantică a câmpului generalizată pentru a descrie comportamentul materiei cuantice în cadrul acestui spațiu-timp. Folosind acest
Teoria relativității generale () [Corola-website/Science/309426_a_310755]
-
nu atât de puternică încât să necesite ea însăși cuantificarea, fizicienii au formulat teorii cuantice ale câmpului în spațiu-timp curb. Aceste teorii se bazează pe relativitatea generală clasică pentru a descrie un spațiu-timp curb de fond, și definesc o teorie cuantică a câmpului generalizată pentru a descrie comportamentul materiei cuantice în cadrul acestui spațiu-timp. Folosind acest formalism, se poate arăta că găurile negre emit un spectru de corp negru de particule, cunoscut sub numele de radiație Hawking, ceea ce conduce la posibilitatea ca
Teoria relativității generale () [Corola-website/Science/309426_a_310755]
-
cuantificarea, fizicienii au formulat teorii cuantice ale câmpului în spațiu-timp curb. Aceste teorii se bazează pe relativitatea generală clasică pentru a descrie un spațiu-timp curb de fond, și definesc o teorie cuantică a câmpului generalizată pentru a descrie comportamentul materiei cuantice în cadrul acestui spațiu-timp. Folosind acest formalism, se poate arăta că găurile negre emit un spectru de corp negru de particule, cunoscut sub numele de radiație Hawking, ceea ce conduce la posibilitatea ca ele să se „evapore” cu timpul. După cum se menționează
Teoria relativității generale () [Corola-website/Science/309426_a_310755]
-
de particule, cunoscut sub numele de radiație Hawking, ceea ce conduce la posibilitatea ca ele să se „evapore” cu timpul. După cum se menționează mai sus, această radiație joacă un rol important în termodinamica găurilor negre. Nevoia de consistență între o descriere cuantică a materiei și o descriere geometrică a spațiu-timpului, ca și apariția singularităților (unde scara de lungime a curburii devine microscopică), induce necesitatea creării unei teorii complete a gravitației cuantice: pentru o descriere adecvată a interiorului găurilor negre, și a universului
Teoria relativității generale () [Corola-website/Science/309426_a_310755]
-
important în termodinamica găurilor negre. Nevoia de consistență între o descriere cuantică a materiei și o descriere geometrică a spațiu-timpului, ca și apariția singularităților (unde scara de lungime a curburii devine microscopică), induce necesitatea creării unei teorii complete a gravitației cuantice: pentru o descriere adecvată a interiorului găurilor negre, și a universului la începuturile existenței lui, adică este necesară o teorie în care gravitația și geometria spațiu-timpului asociată sunt descrise în limbajul fizicii cuantice. În ciuda unor eforturi considerabile, nu este cunoscută
Teoria relativității generale () [Corola-website/Science/309426_a_310755]
-
necesitatea creării unei teorii complete a gravitației cuantice: pentru o descriere adecvată a interiorului găurilor negre, și a universului la începuturile existenței lui, adică este necesară o teorie în care gravitația și geometria spațiu-timpului asociată sunt descrise în limbajul fizicii cuantice. În ciuda unor eforturi considerabile, nu este cunoscută nicio teorie completă și consistentă a gravitației cuantice, deși există mai multe teorii promițătoare. Tentativele de a generaliza teoriile cuantice ale câmpului obișnuite, utilizate în fizica particulelor elementare, pentru a descrie interacțiunile fundamentale
Teoria relativității generale () [Corola-website/Science/309426_a_310755]
-
negre, și a universului la începuturile existenței lui, adică este necesară o teorie în care gravitația și geometria spațiu-timpului asociată sunt descrise în limbajul fizicii cuantice. În ciuda unor eforturi considerabile, nu este cunoscută nicio teorie completă și consistentă a gravitației cuantice, deși există mai multe teorii promițătoare. Tentativele de a generaliza teoriile cuantice ale câmpului obișnuite, utilizate în fizica particulelor elementare, pentru a descrie interacțiunile fundamentale, astfel încât să includă și gravitația, au condus la dificultăți serioase. La energii mici, această abordare
Teoria relativității generale () [Corola-website/Science/309426_a_310755]
-
teorie în care gravitația și geometria spațiu-timpului asociată sunt descrise în limbajul fizicii cuantice. În ciuda unor eforturi considerabile, nu este cunoscută nicio teorie completă și consistentă a gravitației cuantice, deși există mai multe teorii promițătoare. Tentativele de a generaliza teoriile cuantice ale câmpului obișnuite, utilizate în fizica particulelor elementare, pentru a descrie interacțiunile fundamentale, astfel încât să includă și gravitația, au condus la dificultăți serioase. La energii mici, această abordare se dovedește de succes, prin aceea că generează o teorie cuantică efectivă
Teoria relativității generale () [Corola-website/Science/309426_a_310755]
-
teoriile cuantice ale câmpului obișnuite, utilizate în fizica particulelor elementare, pentru a descrie interacțiunile fundamentale, astfel încât să includă și gravitația, au condus la dificultăți serioase. La energii mici, această abordare se dovedește de succes, prin aceea că generează o teorie cuantică efectivă a gravitației. La energii foarte mari, însă, rezultă modele lipsite de orice posibilitate de predicție. O tentativă de a depăși aceste limitări o constituie teoria corzilor, o teorie cuantică nu a particulelor punctiforme, ci a obiectelor unidimensionale extinse. Teoria
Teoria relativității generale () [Corola-website/Science/309426_a_310755]