554 matches
-
blocată. Pentru a putea fi blocate, grilele triodelor trebuie să poată fi polarizate puternic negativ față de catozi. Pentru a evita o sursă separată de alimentare a grilelor, tensiunea la catozi este ridicată cu ajutorul rezistenței R. Datorită simetriei montajului, tensiunea la catozi este constantă, indiferent care dintre triode conduce. Condensatorul C asigură menținerea tensiunii la catozi în regimurile tranzitorii care apar la bascularea bistabilului. Dacă în starea inițială trioda T este în conducție iar trioda T este blocată, tensiunea la "ieșirea normală
Triodă () [Corola-website/Science/336446_a_337775]
-
negativ față de catozi. Pentru a evita o sursă separată de alimentare a grilelor, tensiunea la catozi este ridicată cu ajutorul rezistenței R. Datorită simetriei montajului, tensiunea la catozi este constantă, indiferent care dintre triode conduce. Condensatorul C asigură menținerea tensiunii la catozi în regimurile tranzitorii care apar la bascularea bistabilului. Dacă în starea inițială trioda T este în conducție iar trioda T este blocată, tensiunea la "ieșirea normală" formula 1 va fi „jos”. Ca urmare prin divizorul de tensiune format din R și
Triodă () [Corola-website/Science/336446_a_337775]
-
rezoluția de 0,5 Ångström, in jur de 1 milion de ori mai mic decât diametrul unui fir de păr. Forma originală a microscopiei electronice, microscopia electronică cu transmisie implica o rază de electroni la tensiune înaltă emisă de un catod, de regulă filament de tungsten, și focalizată de lentile electrostatice și electromagnetice. Raza de electroni care a fost transmisă printr-un specimen parțial transparent pentru electroni transportă informație despre structura internă a specimenului în raza care ajunge la sistemul de
Microscop electronic () [Corola-website/Science/310490_a_311819]
-
fiecare zi se ardeau câteva tuburi, lăsând calculatorul nefuncțional aproape jumătate din timp. Tuburi speciale cu fiabilitate mare au devenit disponibile abia în 1948. Majoritatea acestor defectări, însă, aveau loc în perioadele de încălzire și răcire, atunci când stresul termic asupra catozilor tuburilor și dispozitivelor de încălzire era maxim. Prin simpla (deși costisitoarea) soluție de a nu mai opri mașina deloc, inginerii au redus rata defectărilor tuburilor ENIAC la nivelul mai acceptabil de un tub în medie la două zile. Conform unui
ENIAC () [Corola-website/Science/315414_a_316743]
-
zinc depus prin zincare termică, protejează suprafață pieselor atât prin bariera ce se formează între oțel și mediu cât și prin realizarea unei protecții catodice (zincul având potențialul electrochimic mult mai mic decât al fierului, devine anod în timp ce fierul devine catod). Se știe că stratul de zinc este compus din substraturile: eta, zeta, delta, gama, alfa, care au durități diferite și care sunt atacate succesiv de coroziune. Stratul eta fiind primul, este atacat în următoarele ore ce au trecut după procesul
Protecție anticorozivă () [Corola-website/Science/312356_a_313685]
-
semiconductoare este un dispozitiv electronic constituit dintr-o joncțiune "pn" prevăzută cu contacte metalice la regiunile "p" și "n" și introdusă într-o capsulă din sticlă, metal, ceramică sau plastic. Regiunea " p" a joncțiunii constituie anodul diodei, iar joncțiunea "n" , catodul. Dioda semiconductoare se caracterizează prin conductivitate unidirecțională, ca și dioda cu vid: Principalele caracteristici ale diodelor, trecute în cataloage, sunt următoarele: VRRM - tensiunea inversă repetitivă maximă, este tensiunea maximă inversă la care poate rezista dioda, atunci când această tensiune este atinsă
Diodă semiconductoare () [Corola-website/Science/302486_a_303815]
-
bloca toți curenții atunci când este polarizată invers. În realitate, această valoarea este mică în comparație cu valoarea curentului maxim de polarizare directă. CJ - capacitatea tipică a joncțiunii, reprezintă capacitatea intrinsecă joncțiunii, datorită comportării zonei de golire precum un dielectric între anod și catod. Această valoare este de obicei foarte mică, de ordinul picofarazilor (pF). trr - timpul de revenire invers, reprezintă durata de timp necesară „stingerii” diodei atunci când tensiunea la bornele sale alternează între polarizare directă și polarizare inversă. Ideal, această valoare ar fi
Diodă semiconductoare () [Corola-website/Science/302486_a_303815]
-
bun conductor de curent (sare, acid, bază), în care se găsesc doi electrozi printre care circulă un curent continuu. Procesul poate fi descries prin două reacții parțiale. În principiu la anod se eliberează electroni care mai apoi sunt captați la catod. Din aceste două procese parțiale rezultă de fapt reacția de separare a atomilor de oxigen și hidrogen din apă. Procesul este deosebit de avantajos pentru că pe lângă hidrogen și oxigenul rezultat se poate utiliza efficient în alte procese tehnologie, nefiind lăsat liber
Fabricarea hidrogenului () [Corola-website/Science/307810_a_309139]
-
voltaică) este un generator de curent continuu bazat pe transformarea spontană a energiei chimice în energie electrică. Este alcătuit din două plăci conductoare de naturi diferite (electrozii), introduse într-o soluție de electrolit; una din ele reprezintă polul pozitiv (sau catodul) sursei de curent, iar a doua placă - polul negativ (sau anodul). Un exemplu de element galvanic îl constituie un vas cu soluție de acid sulfuric în care se află două plăci metalice - una de zinc și cealaltă de cupru; printr-
Element galvanic () [Corola-website/Science/331627_a_332956]
-
fost inversate.) Un aparat Roentgen este realizat dintr-un tub radiogen (tub generator de radiații, tub Roentgen), un transformator de înaltă tensiune pentru crearea unei diferențe de potențial între electrozii tubului, un transformator de joasă tensiune pentru încălzirea filamentului (respectiv catodului) tubului radiogen. De asemenea, aparatul Roentgen este prevăzut cu organe de reglaj și măsură a tensiunii de accelerare, a curentului anodic, a timpului de expunere la radiații etc. Cea mai importantă componentă a unei instalații generatoare de radiații X este
Aparat Röntgen () [Corola-website/Science/305639_a_306968]
-
Pila de combustie este un sistem electrochimic care convertește energia chimică în energie electrică. Combustibilul (sursa de energie) este situat la anod, iar la catod se află oxidantul. Spre deosebire de baterie, care este un sistem închis, pila consumă combustibilul de la anod prin oxidare electrochimică generând curent electric continuu de joasă tensiune. Avantajele utilizării sistemelor energetice pe bază de pile de combustie sunt: Pentru a asigura desfășurarea
Pilă de combustie () [Corola-website/Science/307364_a_308693]
-
consumă combustibilul de la anod prin oxidare electrochimică generând curent electric continuu de joasă tensiune. Avantajele utilizării sistemelor energetice pe bază de pile de combustie sunt: Pentru a asigura desfășurarea acestui proces, este indispensabilă realizarea unui element conținând un anod, un catod și un electrolit care poate fi alimentat direct cu un combustibil, și cu aer. Oxigenul necesar arderii combustibilului este ionizat la catod. Ionii migrează apoi în electrolit pentru a ajunge la anod unde se produce oxidarea combustibilului. Procesele cinetice ireversibile
Pilă de combustie () [Corola-website/Science/307364_a_308693]
-
de combustie sunt: Pentru a asigura desfășurarea acestui proces, este indispensabilă realizarea unui element conținând un anod, un catod și un electrolit care poate fi alimentat direct cu un combustibil, și cu aer. Oxigenul necesar arderii combustibilului este ionizat la catod. Ionii migrează apoi în electrolit pentru a ajunge la anod unde se produce oxidarea combustibilului. Procesele cinetice ireversibile asociate unei pile de combustie constau într-o serie de reacții de oxidoreducere. Un combustibil A (hidrogen) este transportat la anodul poros
Pilă de combustie () [Corola-website/Science/307364_a_308693]
-
pe suprafața acestuia, apoi disociat în ioni și electroni într-un proces de oxidare. După aceea, are loc migrarea electronilor de la anod și eliberarea gazulul ionic la suprafața anodului. În electrolit se asigură transportul ionilor combustibilului A de la anod la catod. La catod, se întâlnesc ionii (veniți prin electrolit), electronii (veniți prin circuitul electric exterior) și oxidantul B. Are loc reacția de reducere, rezultând un produs de reacție care trebuie eliminat. Pila de combustie se compune deci, din trei elemente: electrolit
Pilă de combustie () [Corola-website/Science/307364_a_308693]
-
acestuia, apoi disociat în ioni și electroni într-un proces de oxidare. După aceea, are loc migrarea electronilor de la anod și eliberarea gazulul ionic la suprafața anodului. În electrolit se asigură transportul ionilor combustibilului A de la anod la catod. La catod, se întâlnesc ionii (veniți prin electrolit), electronii (veniți prin circuitul electric exterior) și oxidantul B. Are loc reacția de reducere, rezultând un produs de reacție care trebuie eliminat. Pila de combustie se compune deci, din trei elemente: electrolit, electrozi și
Pilă de combustie () [Corola-website/Science/307364_a_308693]
-
eliminat. Pila de combustie se compune deci, din trei elemente: electrolit, electrozi și reactanți. În timpul funcționării, electrozii nu suferă nicio modificare structurală, ei servind doar ca suport pentru reacție. La anod are loc oxidarea catalitică a hidrogenului atomic, iar la catod reducerea catalitică a oxigenului atomic. Fenomenul de oxidare și reducere catalitică are loc în regim trifazic (gaz—lichid—solid) la suprafața catalizatorului conform reacției globale:
Pilă de combustie () [Corola-website/Science/307364_a_308693]
-
în ceapa englezească. Alte alimente cu conținut de brom (cu cantități infime, bineînțeles): spanac, salată, pătrunjel, ceai și, în fine, coriandru. Bromul se obține, de obicei, prin oxidarea acidului bromhidric, dar și prin electroliza bromurilor (cu degajare de brom la catod), sau prin acțiunea clorului asupra soluțiilor de bromuri metalice, după reacția: formula 57 Bromul în stare elementară se obține după metoda generală a preparării halogenilor, prin oxidarea ionului de brom electronegativ: formula 58 Oxidarea se produce mai ușor ca la clor, deoarece
Brom () [Corola-website/Science/302790_a_304119]
-
de orientare și separare a ionilor unui "electrolit" (substanță a cărei molecule prin dizolvare sau topire se disociază în "ioni", permițând trecerea curentului electric continuu) cu ajutorul curentului electric continuu. În procesul de "electroliză", ionii pozitivi sau "cationii" sunt dirijați înspre "catod" (pol negativ), iar ionii negativi sau "anionii" înspre "anod" (pol pozitiv) unde își pierd sarcina și se depun sau intră în reacție chimică. La "anod" se produce un proces de "oxidare", în timp ce la "catod" unul de reducere. În anul 1800
Electroliză () [Corola-website/Science/302834_a_304163]
-
pozitivi sau "cationii" sunt dirijați înspre "catod" (pol negativ), iar ionii negativi sau "anionii" înspre "anod" (pol pozitiv) unde își pierd sarcina și se depun sau intră în reacție chimică. La "anod" se produce un proces de "oxidare", în timp ce la "catod" unul de reducere. În anul 1800, William Nicholson și Johann Ritter au descompus apa în hidrogen și oxigen. În 1807, au fost descoperite 5 metale folosindu-se electroliza, de către savantul Humphry Davy. Aceste metale sunt: potasiul, sodiul, bariul, calciul și
Electroliză () [Corola-website/Science/302834_a_304163]
-
sunt absorbiți sau cedați de către atomi sau ioni. Acești atomi care primesc sau pierd electroni pentru a fi încărcați trec în electrolit. Oxidarea ionilor sau a moleculelor neutre apare la anod, iar reducerea ionilor sau a moleculelor neutre apare la catod. De exemplu, este posibilă oxidarea ionului feros la ionul de fier la anod: De asemenea, este posibilă reducerea cianurii ferice la ferocianură la catod: Moleculele neutre nu pot reacționa la niciun electrod; de exemplu, p-Benzocuinona poate fi redusă la hidrochinonă
Electroliză () [Corola-website/Science/302834_a_304163]
-
sau a moleculelor neutre apare la anod, iar reducerea ionilor sau a moleculelor neutre apare la catod. De exemplu, este posibilă oxidarea ionului feros la ionul de fier la anod: De asemenea, este posibilă reducerea cianurii ferice la ferocianură la catod: Moleculele neutre nu pot reacționa la niciun electrod; de exemplu, p-Benzocuinona poate fi redusă la hidrochinonă la catod: Masa elementului separat prin electroliză este dată de "legea lui Faraday" sau "legea electrolizei". Este proporțională cu cantitatea de electricitate vehiculată prin
Electroliză () [Corola-website/Science/302834_a_304163]
-
exemplu, este posibilă oxidarea ionului feros la ionul de fier la anod: De asemenea, este posibilă reducerea cianurii ferice la ferocianură la catod: Moleculele neutre nu pot reacționa la niciun electrod; de exemplu, p-Benzocuinona poate fi redusă la hidrochinonă la catod: Masa elementului separat prin electroliză este dată de "legea lui Faraday" sau "legea electrolizei". Este proporțională cu cantitatea de electricitate vehiculată prin electrolizor. După Faraday, cantitatea de metal depusă la catod este proporțională cu cantitatea de curent (produsul dintre intensitatea
Electroliză () [Corola-website/Science/302834_a_304163]
-
de exemplu, p-Benzocuinona poate fi redusă la hidrochinonă la catod: Masa elementului separat prin electroliză este dată de "legea lui Faraday" sau "legea electrolizei". Este proporțională cu cantitatea de electricitate vehiculată prin electrolizor. După Faraday, cantitatea de metal depusă la catod este proporțională cu cantitatea de curent (produsul dintre intensitatea curentului electric și timpul de electroliză) și cu echivalentul-gram al metalului depus. formula 2 , unde "m" este cantitatea de metal depusă la catod (în grame), "A" este masa atomică a metalului, "n
Electroliză () [Corola-website/Science/302834_a_304163]
-
prin electrolizor. După Faraday, cantitatea de metal depusă la catod este proporțională cu cantitatea de curent (produsul dintre intensitatea curentului electric și timpul de electroliză) și cu echivalentul-gram al metalului depus. formula 2 , unde "m" este cantitatea de metal depusă la catod (în grame), "A" este masa atomică a metalului, "n" este valența metalului, "F" reprezintă 96500 de coulombi per secunda, "I" intensitatea curentului electric (în coulombi per mol), iar "t" este timpul de electroliză. Raportul formula 3 se numește "echivalent electrochimic" În
Electroliză () [Corola-website/Science/302834_a_304163]
-
mai mica densitate dintre metale. Prepararea litiului se face prin electroliza unui amestec de clorura de litiu și clorura de potasiu. Celulă metalică de litiu este construită dintr-un înveliș de oțel cu conținut scăzut de carbon, care funcționează drept catod și un container ce conține sare fuzionată și o tijă de grafit, care funcționează ca anod. Celulă este încărcată inițial cu un amestec de clorura de litiu (55%) și clorura de potasiu (45%); amestecul electrolitic se topește la aproximativ 400C
Litiu () [Corola-website/Science/302768_a_304097]