685 matches
-
în Japonia și Lawrence Livermore National Laboratory, SUA. Pentru numere atomice Z > 122 este posibil să se observe radioactivități cluster mai intense decât dezintegrarea alfa. Poenaru și colaboratorii au extins teoria fisiunii binare la fenomene mai complexe, cum ar fi fisiunea ternară (fisiune însoțită de emisii de particule) și au prezis fisiunea multicluster. Fisiunea cuaternară (fisiune însoțită de emiterea a două particule alfa) a fost experimental descoperită de Goennenwein et al. Pyatkov, Kamanin et al. din IUCN Dubna au efectuat experimente
Dorin Poenaru () [Corola-website/Science/330158_a_331487]
-
și Lawrence Livermore National Laboratory, SUA. Pentru numere atomice Z > 122 este posibil să se observe radioactivități cluster mai intense decât dezintegrarea alfa. Poenaru și colaboratorii au extins teoria fisiunii binare la fenomene mai complexe, cum ar fi fisiunea ternară (fisiune însoțită de emisii de particule) și au prezis fisiunea multicluster. Fisiunea cuaternară (fisiune însoțită de emiterea a două particule alfa) a fost experimental descoperită de Goennenwein et al. Pyatkov, Kamanin et al. din IUCN Dubna au efectuat experimente de fisiune
Dorin Poenaru () [Corola-website/Science/330158_a_331487]
-
Z > 122 este posibil să se observe radioactivități cluster mai intense decât dezintegrarea alfa. Poenaru și colaboratorii au extins teoria fisiunii binare la fenomene mai complexe, cum ar fi fisiunea ternară (fisiune însoțită de emisii de particule) și au prezis fisiunea multicluster. Fisiunea cuaternară (fisiune însoțită de emiterea a două particule alfa) a fost experimental descoperită de Goennenwein et al. Pyatkov, Kamanin et al. din IUCN Dubna au efectuat experimente de fisiune ternară coliniară. În 2005, când s-au comemorat 50
Dorin Poenaru () [Corola-website/Science/330158_a_331487]
-
este posibil să se observe radioactivități cluster mai intense decât dezintegrarea alfa. Poenaru și colaboratorii au extins teoria fisiunii binare la fenomene mai complexe, cum ar fi fisiunea ternară (fisiune însoțită de emisii de particule) și au prezis fisiunea multicluster. Fisiunea cuaternară (fisiune însoțită de emiterea a două particule alfa) a fost experimental descoperită de Goennenwein et al. Pyatkov, Kamanin et al. din IUCN Dubna au efectuat experimente de fisiune ternară coliniară. În 2005, când s-au comemorat 50 ani de la
Dorin Poenaru () [Corola-website/Science/330158_a_331487]
-
să se observe radioactivități cluster mai intense decât dezintegrarea alfa. Poenaru și colaboratorii au extins teoria fisiunii binare la fenomene mai complexe, cum ar fi fisiunea ternară (fisiune însoțită de emisii de particule) și au prezis fisiunea multicluster. Fisiunea cuaternară (fisiune însoțită de emiterea a două particule alfa) a fost experimental descoperită de Goennenwein et al. Pyatkov, Kamanin et al. din IUCN Dubna au efectuat experimente de fisiune ternară coliniară. În 2005, când s-au comemorat 50 ani de la moartea marelui
Dorin Poenaru () [Corola-website/Science/330158_a_331487]
-
fisiune însoțită de emisii de particule) și au prezis fisiunea multicluster. Fisiunea cuaternară (fisiune însoțită de emiterea a două particule alfa) a fost experimental descoperită de Goennenwein et al. Pyatkov, Kamanin et al. din IUCN Dubna au efectuat experimente de fisiune ternară coliniară. În 2005, când s-au comemorat 50 ani de la moartea marelui fizician teoretician francez de origine română Alexandru Proca, Poenaru a difuzat ample informații privind ecuațiile relativiste Proca privind câmpul vectorial bozonic precum și viața sa în România și
Dorin Poenaru () [Corola-website/Science/330158_a_331487]
-
atomici metalici depuși pe suprafețe plane. În cadrul acestor cercetări multidisciplinare s-a dezvoltat un nou model uni-particulă în pături deformate: oscilatorul armonic hemisferoidal. Marea productivitate a trimerului ionizat (cu doi electroni delocalizați, annalogul unei particule alfa) observată în experimentele de fisiune a clusterilor metalici dublu ionizați a fost explicată. Spre deosebire de fisiunea nucleor grele, în acest caz, nu numai energia de deformare a modelului picătură de lichid, dar și corecțiile de pături ale celor doi electroni delocalizați ale fragmentului ușor ating simultan
Dorin Poenaru () [Corola-website/Science/330158_a_331487]
-
s-a dezvoltat un nou model uni-particulă în pături deformate: oscilatorul armonic hemisferoidal. Marea productivitate a trimerului ionizat (cu doi electroni delocalizați, annalogul unei particule alfa) observată în experimentele de fisiune a clusterilor metalici dublu ionizați a fost explicată. Spre deosebire de fisiunea nucleor grele, în acest caz, nu numai energia de deformare a modelului picătură de lichid, dar și corecțiile de pături ale celor doi electroni delocalizați ale fragmentului ușor ating simultan un minim. S-a sugerat folosirea acestui tip de fisiune
Dorin Poenaru () [Corola-website/Science/330158_a_331487]
-
fisiunea nucleor grele, în acest caz, nu numai energia de deformare a modelului picătură de lichid, dar și corecțiile de pături ale celor doi electroni delocalizați ale fragmentului ușor ating simultan un minim. S-a sugerat folosirea acestui tip de fisiune in nanotehnologie. Din 1964 Poenaru a colaborat cu oameni de știință din JINR Dubna, CRN Strasbourg, Institut de Physique Nucléaire d'Orsay, CENBG Bordeaux-Gradignan, Vanderbilt University (Nashville), Centrul de Cercetări Științifice Avansate al Japan Atomic Energy Research Institute Tokai, Institut
Dorin Poenaru () [Corola-website/Science/330158_a_331487]
-
(n. 29 septembrie 1901; d. 28 noiembrie 1954) a fost un fizician italian, laureat al Premiului Nobel pentru Fizică pe anul 1938, descoperitorul fisiunii nucleare. A avut un rol important în conceperea proiectului Manhattan de punere la punct a bombei nucleare. "„Pentru demonstrațiile sale despre existența de noi elemente radioactive produse prin iradiere cu neutroni, și pentru descoperirea corelată a reacțiilor nucleare generate de
Enrico Fermi () [Corola-website/Science/298241_a_299570]
-
Regale a Italiei" ("Règia Accademia d'Italia"). Aici a activat timp de 10 ani și a pus bazele școlii italiene de fizică modernă. În 1934 a efectuat experiențe de bombardare a nucleelor elementelor grele cu neutroni - primele cercetări în domeniul fisiunii nucleare. Pentru cercetările în domeniu proprietăților neutronilor, Fermi a primit, în anul 1938, Premiul Nobel. După decernarea premiului, Fermi nu s-a mai întors în țară. S-a stabilit cu toată familia în Statele Unite, în semn de protest împotriva acțiunilor
Enrico Fermi () [Corola-website/Science/298241_a_299570]
-
λ = 365 nm), B (albastru, λ = 445 nm) și V (vizibil, λ = 551 nm). Domeniul în care apar cele mai înalte temperaturi este cel al reacțiilor nucleare, unde ordinul de mărime al temperaturilor este de 100 MK la reacțiile de fisiune, respectiv 100 GK la reacțiile de fuziune. Ultimele se întâlnesc și în astrofizică, în cazul supernovelor. În experiențele de laborator aceste temperaturi se deduc din energia neutronilor, energie care este determinată cu spectrometre de neutroni rapizi. Etalonarea termometrelor uzuale se
Termometrie () [Corola-website/Science/320066_a_321395]
-
a fost hărțuit ca fiind un "Evreu alb" pentru că învăța teoriile lui Albert Einstein, în contradicție cu mișcarea Deutsche Physik susținută de naziști. După o anchetă instigată de Heisenberg însuși, șeful SS, Heinrich Himmler, a interzis atacurile politice asupra fizicianului. Fisiunea nucleară a fost descoperită în Germania în 1938. Heisenberg a rămas in Germania în timpul celui de-al doilea război mondial, lucrând pentru regimul nazist. A condus programul german pentru arme și energie nucleară, dar gradul cooperării sale la dezvoltarea armelor
Werner Heisenberg () [Corola-website/Science/298062_a_299391]
-
parte din planctonul marin; nutriția lor constă într-o mare varietate de zooplancton, dar și unele specii de fitoplancton, precum diatomeele, cocolitoforele și dinoflagelatele. Pot consuma, de asemenea, bacterii sau grohotiș organic. Înmulțirea lor este puțin documentată; au fost raportate fisiunea binară, fisiunea multiplă și înmugurirea.Foraminiferele sunt sarcodine unicelulare cu cochilii. Acestea sunt divizate în cămăruțe, care sunt adăugate treptat în timpul creșterii, iar cele mai simple forme sunt tuburi deschise sau sfere goale. Depinzând de specie, cochilia poate fi făcută
Protiste () [Corola-website/Science/302816_a_304145]
-
planctonul marin; nutriția lor constă într-o mare varietate de zooplancton, dar și unele specii de fitoplancton, precum diatomeele, cocolitoforele și dinoflagelatele. Pot consuma, de asemenea, bacterii sau grohotiș organic. Înmulțirea lor este puțin documentată; au fost raportate fisiunea binară, fisiunea multiplă și înmugurirea.Foraminiferele sunt sarcodine unicelulare cu cochilii. Acestea sunt divizate în cămăruțe, care sunt adăugate treptat în timpul creșterii, iar cele mai simple forme sunt tuburi deschise sau sfere goale. Depinzând de specie, cochilia poate fi făcută din compuși
Protiste () [Corola-website/Science/302816_a_304145]
-
dobândesc nutrienții prin difuzie, fie ca parazit în cadrul unei gazde. Pot fi unicelulare sau pot forma colonii. Au pseudopode cu rol în deplasare și înglobarea particulelor de hrană. Sunt printre primele eucariote care au apărut. Reproducerea poate fi asexuată (prin fisiune binară), fie sexuată (doar unele specii). Nu prezintă mitocondrii. Unele specii sunt parazite si periculoase, precum Trypanosoma. Cilioforele reprezintă un grup de protiste asemănătoare animalelor. Există aproximativ 8.000 specii de ciliofore. Acestea sunt caracterizate de prezența unor organite, numite
Protiste () [Corola-website/Science/302816_a_304145]
-
ape dulci, dar pot fi întâlnite și specii de apă sărată), precum și în soluri umede. Acestea sunt polinuclarea: conțin un micronucleu diploid, responsabil cu reproducerea sexuată, precum și un macronucleu poliploid, responsabil cu regularea activităților celulare. Reproducerea poate fi asexuată (prin fisiune) sau sexuată. Exemple de ciliofore: Didinium, Paramecium, Stentor, Suctoria, precum și Vorticella. Sporozoarele reprezintă un grup de protiste asemănătoare animalelor, ce fac parte din încrengătura Apicomplexa. Sunt cunoscute în jur de 25.000 specii. Acestea nu prezintă organite de locomoție, precum
Protiste () [Corola-website/Science/302816_a_304145]
-
de puternică cu repulsia electrostatica dintre protoni. La o distanță mai mare, forța puternică reziduala descrește exponențial, în timp ce forță electrostatica scade proporțional cu 1/r. Această interacțiune dintre cele două forțe fundamentale explică coeziunea nucleelor atomice, dar și procesul de fisiune al nucleelor grele. Fenomenologic, interacțiunea puternică reziduala poate fi descrisă că un schimb de pioni. Un lucru care ajută la micșorarea repulsiei dintre protonii unui nucleu este prezentă neutronilor. Aceștia sunt neutri din punct de vedere electric și nu sunt
Interacțiunea tare () [Corola-website/Science/299436_a_300765]
-
aflată în declin înainte de război, a ajuns la dezastru spre sfârșitul acestuia. Acesta era adevărat în particular și pentru fizica teoretică. În anul 1944 Frédéric Joliot a însărcinat-o pe Cécile Morette să prezinte un raport asupra lucrărilor în domeniul fisiunii nucleare, în lumina modelului picăturii lichide realizate de Niels Bohr și John Archibald Wheeler (1939). Aceste lucrări nu puteau fi înțelese fără o bună cunoaștere a mecanicii cuantice. În acel timp în Franța nu se țineau curusri de mecanică cuantică
Cécile DeWitt-Morette () [Corola-website/Science/329923_a_331252]
-
Un reactor nuclear este o instalație tehnologică în care are loc o reacție de fisiune nucleară în lanț în condiții controlate, astfel încât să poată fi valorificată căldura generată sau utilizate fascicolele de neutroni . Reactoarele nucleare au trei tipuri de aplicații. Enrico Fermi și Leo Szilard, ambii de la University of Chicago, au fost primii care au
Reactor nuclear () [Corola-website/Science/304286_a_305615]
-
reactor nuclear din SUA a fost utilizat pentru a produce plutoniu pentru arma nucleară. Alte reactoare au fost folosite în propulsia navală (submarine, nave militare). Pe 20 Decembrie 1951, în SUA, a fost generat pentru prima dată curent electric folosind fisiunea nucleară la Reactorul rapid experimental (EBR-1) localizat lângă Arco, statul Idaho. Pe 26 Iunie 1954 a început să genereze curent electric reactorul nuclear de la Obninsk. Alți reactori de putere au început să funcționeze la Calder Hall în 1956 și Shippingport
Reactor nuclear () [Corola-website/Science/304286_a_305615]
-
genereze o putere de netă de 500MW, adică de zece ori puterea consumată. Se estimează că instalația ITER va fi operațională în 2020, urmând ca un prototip comercial de reactor cu fuziune să fie operațional în 2040 . Reactoarele nucleare de fisiune, indiferent de destinația lor, au următoarele elemente comune: Combustibilul nuclear Reacția de fisiune în lanț are loc în combustibilul nuclear. Aproape toate reactoarele nucleare utilizează uraniul drept combustibil. Reactoarele comerciale, cu câteva excepții, utilizează uraniul îmbogățit 2-5% în izotopul U235
Reactor nuclear () [Corola-website/Science/304286_a_305615]
-
Se estimează că instalația ITER va fi operațională în 2020, urmând ca un prototip comercial de reactor cu fuziune să fie operațional în 2040 . Reactoarele nucleare de fisiune, indiferent de destinația lor, au următoarele elemente comune: Combustibilul nuclear Reacția de fisiune în lanț are loc în combustibilul nuclear. Aproape toate reactoarele nucleare utilizează uraniul drept combustibil. Reactoarele comerciale, cu câteva excepții, utilizează uraniul îmbogățit 2-5% în izotopul U235. Unele reactoare utilizează un combustibil ce conține pe lângă uranium și plutoniu MOX), un
Reactor nuclear () [Corola-website/Science/304286_a_305615]
-
U235. Unele reactoare utilizează un combustibil ce conține pe lângă uranium și plutoniu MOX), un alt element fisionabil. Combustibilul și structura mecanică în care este acesta așezat formează zona activă (inima) reactorului. Moderatorul Moderatorul este necesar pentru încetinirea neutronilor rezultați din fisiune (neutron termici) pentru a le crește eficiența de producere a unor noi reacții de fisiune. Moderatorul trebuie să fie un element ușor care permite neutronilor să se ciocnească fără a fi capturați. Ca moderatori se utilizează apa obișnuită, apa grea
Reactor nuclear () [Corola-website/Science/304286_a_305615]
-
element fisionabil. Combustibilul și structura mecanică în care este acesta așezat formează zona activă (inima) reactorului. Moderatorul Moderatorul este necesar pentru încetinirea neutronilor rezultați din fisiune (neutron termici) pentru a le crește eficiența de producere a unor noi reacții de fisiune. Moderatorul trebuie să fie un element ușor care permite neutronilor să se ciocnească fără a fi capturați. Ca moderatori se utilizează apa obișnuită, apa grea (deuterium) sau grafitul. Agentul de răcire Pentru a menține temperatura combustibilului în limite tehnic acceptabile
Reactor nuclear () [Corola-website/Science/304286_a_305615]