484 matches
-
II sunt denumite împreună supernove cu colaps al miezului. O diferență fundamentală între supernovele de tip Ia și cele cu colaps al miezului îl constituie sursa de energie pentru radiația emisă în apropierea maximului curbei de lumină. Stelele ce produc supernove cu colaps al miezului sunt stele cu straturi exterioare extinse și care pot atinge un grad de transparență cu o expansiune relativ redusă. Mare parte din energia care alimentează emisia la maximul de luminozitate provine din unda de șoc ce
Supernovă () [Corola-website/Science/304000_a_305329]
-
exterioare extinse și care pot atinge un grad de transparență cu o expansiune relativ redusă. Mare parte din energia care alimentează emisia la maximul de luminozitate provine din unda de șoc ce încălzește și împinge straturile exterioare. Stelele ce generează supernove de tipul Ia, pe de altă parte, sunt obiecte compacte, mult mai mici (dar mai masive) decât Soarele, care trebuie să se expandeze (astfel răcindu-se) enorm înainte de a deveni transparente. Căldura din explozie se disipă în expansiune și nu
Supernovă () [Corola-website/Science/304000_a_305329]
-
mult mai mici (dar mai masive) decât Soarele, care trebuie să se expandeze (astfel răcindu-se) enorm înainte de a deveni transparente. Căldura din explozie se disipă în expansiune și nu mai este disponibilă pentru generarea de lumină. Radiația emisă de supernovele de tip Ia se poate, astfel, atribui în totalitate dezintegrării radionuclidelor produse în explozie; în principal nichel-56 (cu un timp de înjumătățire de 6,1 zile) și produsul său cobalt-56 (cu un timp de înjumătățire de 77 zile). Razele gamma
Supernovă () [Corola-website/Science/304000_a_305329]
-
de 6,1 zile) și produsul său cobalt-56 (cu un timp de înjumătățire de 77 zile). Razele gamma emise în timpul acestei dezintegrări nucleare sunt absorbite de materialul aruncat, care astfel se încălzește și devine incandescent. Pe măsură ce materialul împrăștiat de o supernovă cu colaps al miezului se îndepărtează și se răcește, dezintegrarea nucleară ajunge în cele din urmă să devină principala sursă de energie a emisiei de lumină și în acest caz. O supernovă puternică de tipul Ia poate arunca 0,5-1
Supernovă () [Corola-website/Science/304000_a_305329]
-
și devine incandescent. Pe măsură ce materialul împrăștiat de o supernovă cu colaps al miezului se îndepărtează și se răcește, dezintegrarea nucleară ajunge în cele din urmă să devină principala sursă de energie a emisiei de lumină și în acest caz. O supernovă puternică de tipul Ia poate arunca 0,5-1,0 mase solare de nichel-56, iar o supernovă cu colaps al miezului probabil aruncă aproape 0,1 mase solare de nichel-56. Supernovele sunt o sursă-cheie de elemente mai grele decât oxigenul. Aceste
Supernovă () [Corola-website/Science/304000_a_305329]
-
se răcește, dezintegrarea nucleară ajunge în cele din urmă să devină principala sursă de energie a emisiei de lumină și în acest caz. O supernovă puternică de tipul Ia poate arunca 0,5-1,0 mase solare de nichel-56, iar o supernovă cu colaps al miezului probabil aruncă aproape 0,1 mase solare de nichel-56. Supernovele sunt o sursă-cheie de elemente mai grele decât oxigenul. Aceste elemente sunt produse prin fuziune nucleară (pentru fier-56 și elemente mai ușoare), și prin nucleosinteză în timpul
Supernovă () [Corola-website/Science/304000_a_305329]
-
energie a emisiei de lumină și în acest caz. O supernovă puternică de tipul Ia poate arunca 0,5-1,0 mase solare de nichel-56, iar o supernovă cu colaps al miezului probabil aruncă aproape 0,1 mase solare de nichel-56. Supernovele sunt o sursă-cheie de elemente mai grele decât oxigenul. Aceste elemente sunt produse prin fuziune nucleară (pentru fier-56 și elemente mai ușoare), și prin nucleosinteză în timpul exploziei pentru elementele mai grele decât fierul. Supernovele sunt cel mai probabil candidat pentru
Supernovă () [Corola-website/Science/304000_a_305329]
-
0,1 mase solare de nichel-56. Supernovele sunt o sursă-cheie de elemente mai grele decât oxigenul. Aceste elemente sunt produse prin fuziune nucleară (pentru fier-56 și elemente mai ușoare), și prin nucleosinteză în timpul exploziei pentru elementele mai grele decât fierul. Supernovele sunt cel mai probabil candidat pentru r-proces, o formă rapidă de nucleosinteză ce are loc în condiții de temperatură ridicată și de mare densitate de neutroni. Reacțiile produc nuclei foarte instabili, bogați în neutroni. Aceste forme sunt instabile și suferă
Supernovă () [Corola-website/Science/304000_a_305329]
-
de temperatură ridicată și de mare densitate de neutroni. Reacțiile produc nuclei foarte instabili, bogați în neutroni. Aceste forme sunt instabile și suferă dezintegrare beta foarte rapid înspre forme mai stabile. Reacția r-proces, care se presupune că are loc în supernovele de tipul II, produce aproximativ jumătate din toate celelalte elemente existente în univers dincolo de fier, inclusiv plutoniu, uraniu și californiu. Singurul alt proces major ce produce elemente mai grele decât fierul este s-procesul din stelele gigante roșii, mari și
Supernovă () [Corola-website/Science/304000_a_305329]
-
californiu. Singurul alt proces major ce produce elemente mai grele decât fierul este s-procesul din stelele gigante roșii, mari și vechi, unde se produc aceste elemente mult mai lent, și oricum nu elemente mai grele decât plumbul. Rămășița unei supernove constă dintr-un obiect compact și o undă de șoc de material ce se extinde rapid. Acest nor de material mătură mediul interstelar înconjurător într-o fază de expansiune liberă, ce poate dura până la două secole. Unda apoi trece, treptat
Supernovă () [Corola-website/Science/304000_a_305329]
-
încet cu mediul interstelar înconjurător de-a lungul unei perioade de aproximativ 10.000 de ani. În astronomia standard, Big Bangul a produs hidrogen, heliu și puțin litiu, pe când toate celelalte elemente mai grele au fost sintetizate în stele și supernove. Supernovele tind să îmbogățească mediul interstelar cu "metal"e, termen ce înseamnă, pentru astronomi, toate elementele în afara hidrogenului și heliului, definiție diferită de cea din chimie. Aceste elemente injectate îmbogățesc în cele din urmă norii moleculari în care se formează
Supernovă () [Corola-website/Science/304000_a_305329]
-
cu mediul interstelar înconjurător de-a lungul unei perioade de aproximativ 10.000 de ani. În astronomia standard, Big Bangul a produs hidrogen, heliu și puțin litiu, pe când toate celelalte elemente mai grele au fost sintetizate în stele și supernove. Supernovele tind să îmbogățească mediul interstelar cu "metal"e, termen ce înseamnă, pentru astronomi, toate elementele în afara hidrogenului și heliului, definiție diferită de cea din chimie. Aceste elemente injectate îmbogățesc în cele din urmă norii moleculari în care se formează stelele
Supernovă () [Corola-website/Science/304000_a_305329]
-
Aceste elemente injectate îmbogățesc în cele din urmă norii moleculari în care se formează stelele. Astfel, fiecare generație stelară are o compoziție ușor diferită, de la un amestec aproape pur de hidrogen și heliu până la o compoziție mai bogată în metale. Supernovele sunt mecanismul principal de distribuție în spațiu al acestor elemente grele, formate într-o stea în perioada sa de fuziune nucleară. Abundența diferită de elemente în materialul ce formează o stea are o importantă influență asupra vieții stelei, și ar
Supernovă () [Corola-website/Science/304000_a_305329]
-
perioada sa de fuziune nucleară. Abundența diferită de elemente în materialul ce formează o stea are o importantă influență asupra vieții stelei, și ar putea influența decisiv posibilitatea existenței de planete pe orbita acesteia. Energia cinetică a unei rămășițe de supernovă în expansiune poate declanșa formarea de stele din cauza compresiei norilor moleculari denși aflați în spațiul din apropiere. Creșterea de presiune turbulentă poate și preveni formarea de stele dacă norul nu poate pierde energia în exces. Dovezi din produsele rezultate din
Supernovă () [Corola-website/Science/304000_a_305329]
-
de stele din cauza compresiei norilor moleculari denși aflați în spațiul din apropiere. Creșterea de presiune turbulentă poate și preveni formarea de stele dacă norul nu poate pierde energia în exces. Dovezi din produsele rezultate din izotopii radioactivi arată că o supernovă aflată în apropiere a ajutat la determinarea compoziției Sistemului Solar acum 4,5 miliarde de ani, și ar fi putut chiar să fi declanșat formarea acestui sistem. O supernovă apropiată de Pământ este o explozie ce ar avea ca rezultat
Supernovă () [Corola-website/Science/304000_a_305329]
-
exces. Dovezi din produsele rezultate din izotopii radioactivi arată că o supernovă aflată în apropiere a ajutat la determinarea compoziției Sistemului Solar acum 4,5 miliarde de ani, și ar fi putut chiar să fi declanșat formarea acestui sistem. O supernovă apropiată de Pământ este o explozie ce ar avea ca rezultat moartea unei stele aflate suficient de aproape de Pământ (la mai puțin de 100 ani-lumină) pentru a avea efecte observabile asupra biosferei. Razele gamma de la o supernovă induc o reacție
Supernovă () [Corola-website/Science/304000_a_305329]
-
acestui sistem. O supernovă apropiată de Pământ este o explozie ce ar avea ca rezultat moartea unei stele aflate suficient de aproape de Pământ (la mai puțin de 100 ani-lumină) pentru a avea efecte observabile asupra biosferei. Razele gamma de la o supernovă induc o reacție chimică în straturile superioare ale atmosferei, reacție ce transformă azotul molecular în oxizi azotici, consumând suficient din stratul de ozon pentru a expune suprafața planetei la radiații solare și cosmice dăunătoare. Aceasta este una din cauzele presupuse
Supernovă () [Corola-website/Science/304000_a_305329]
-
la radiații solare și cosmice dăunătoare. Aceasta este una din cauzele presupuse ale dispariției de specii de la sfârșitul ordovicianului, când aproape 60% din formele de viață oceanice de pe Pământ au murit. În 1996, s-a teoretizat că urme ale fostelor supernove ar putea fi detectabile pe Pământ sub formă de izotopi metalici aflați în stratele de rocă. În consecință, s-a observat creșterea cantității de fier-60 în rocile de pe fundul Oceanului Pacific. Supernovele de tip Ia ar putea fi, potențial, cele mai
Supernovă () [Corola-website/Science/304000_a_305329]
-
În 1996, s-a teoretizat că urme ale fostelor supernove ar putea fi detectabile pe Pământ sub formă de izotopi metalici aflați în stratele de rocă. În consecință, s-a observat creșterea cantității de fier-60 în rocile de pe fundul Oceanului Pacific. Supernovele de tip Ia ar putea fi, potențial, cele mai periculoase dacă au loc suficient de aproape de Pământ. Întrucât supernovele de tip Ia apar din stelele slabe din categoria piticelor albe, este posibil ca o supernovă ce ar putea afecta Pământul
Supernovă () [Corola-website/Science/304000_a_305329]
-
izotopi metalici aflați în stratele de rocă. În consecință, s-a observat creșterea cantității de fier-60 în rocile de pe fundul Oceanului Pacific. Supernovele de tip Ia ar putea fi, potențial, cele mai periculoase dacă au loc suficient de aproape de Pământ. Întrucât supernovele de tip Ia apar din stelele slabe din categoria piticelor albe, este posibil ca o supernovă ce ar putea afecta Pământul să apară pe neprevăzute într-un sistem solar care nu a fost bine studiat. O teorie sugerează că o
Supernovă () [Corola-website/Science/304000_a_305329]
-
în rocile de pe fundul Oceanului Pacific. Supernovele de tip Ia ar putea fi, potențial, cele mai periculoase dacă au loc suficient de aproape de Pământ. Întrucât supernovele de tip Ia apar din stelele slabe din categoria piticelor albe, este posibil ca o supernovă ce ar putea afecta Pământul să apară pe neprevăzute într-un sistem solar care nu a fost bine studiat. O teorie sugerează că o supernovă de tip Ia ar trebui să fie mai aproape de o mie de parseci (3300 ani-lumină
Supernovă () [Corola-website/Science/304000_a_305329]
-
de tip Ia apar din stelele slabe din categoria piticelor albe, este posibil ca o supernovă ce ar putea afecta Pământul să apară pe neprevăzute într-un sistem solar care nu a fost bine studiat. O teorie sugerează că o supernovă de tip Ia ar trebui să fie mai aproape de o mie de parseci (3300 ani-lumină) pentru a afecta Pământul. Cel mai apropiat candidat cunoscut este IK Pegasi (vezi mai jos). Estimările recente prezic că o supernovă de tip II ar
Supernovă () [Corola-website/Science/304000_a_305329]
-
teorie sugerează că o supernovă de tip Ia ar trebui să fie mai aproape de o mie de parseci (3300 ani-lumină) pentru a afecta Pământul. Cel mai apropiat candidat cunoscut este IK Pegasi (vezi mai jos). Estimările recente prezic că o supernovă de tip II ar trebui să fie mai aproape de opt parseci (26 ani-lumină) pentru a distruge jumătate din stratul de ozon al Pământului. Mai multe stele mari din Calea Lactee ar fi posibile supernove în următoarele câteva mii-sute de milioane de
Supernovă () [Corola-website/Science/304000_a_305329]
-
mai jos). Estimările recente prezic că o supernovă de tip II ar trebui să fie mai aproape de opt parseci (26 ani-lumină) pentru a distruge jumătate din stratul de ozon al Pământului. Mai multe stele mari din Calea Lactee ar fi posibile supernove în următoarele câteva mii-sute de milioane de ani. Printre acestea se numără Rho Cassiopeiae, Eta Carinae, RS Ophiuchi, U Scorpii, steaua Kitt Peak Downes KPD1930+2752, HD 179821, IRC+10420, VY Canis Majoris, Betelgeuse, Antares și Spica. Multe stele Wolf-Rayet
Supernovă () [Corola-website/Science/304000_a_305329]
-
steaua Kitt Peak Downes KPD1930+2752, HD 179821, IRC+10420, VY Canis Majoris, Betelgeuse, Antares și Spica. Multe stele Wolf-Rayet, cum ar fi Gamma Velorum WR 104, și cele din clusterul Quintuplet, sunt și ele considerate posibile precursoare ale unei supernove în viitorul apropiat. Cea mai apropiată stea-candidat de supernovă este IK Pegasi (HR 8210), aflată la 150 ani-lumină. Acest sistem binar cu orbită mică constă dintr-o stea din secvența principală și o pitică albă, aflate una de alta la
Supernovă () [Corola-website/Science/304000_a_305329]