31,129 matches
-
Deriva genetică sau fluctuația genetică (în ) este modificarea întâmplătoare a frecvenței alelelor unei gene într-o populație, de la o generație la alta. Alelele urmașilor sunt o mostră a alelelor părinților, iar soarta determină dacă un individ supraviețuiește și se reproduce. Frecvența alelelor într-o populație
Derivă genetică () [Corola-website/Science/331483_a_332812]
-
populație, de la o generație la alta. Alelele urmașilor sunt o mostră a alelelor părinților, iar soarta determină dacă un individ supraviețuiește și se reproduce. Frecvența alelelor într-o populație este proporția copiilor unei gene care au o anumită configurație. Deriva genetică poate cauza dispariția unor alele și poate reduce variabilitatea genetică. Atunci când există puține copii ale unei alele într-o populație, efectul derivei genetice e mai mare, iar când există mai mult copii efectul este mic. Numeroase discuții sunt purtate pe
Derivă genetică () [Corola-website/Science/331483_a_332812]
-
mostră a alelelor părinților, iar soarta determină dacă un individ supraviețuiește și se reproduce. Frecvența alelelor într-o populație este proporția copiilor unei gene care au o anumită configurație. Deriva genetică poate cauza dispariția unor alele și poate reduce variabilitatea genetică. Atunci când există puține copii ale unei alele într-o populație, efectul derivei genetice e mai mare, iar când există mai mult copii efectul este mic. Numeroase discuții sunt purtate pe tema importaței acordate selecției naturale în raport cu procesele neutre (aleatoare), cum
Derivă genetică () [Corola-website/Science/331483_a_332812]
-
reproduce. Frecvența alelelor într-o populație este proporția copiilor unei gene care au o anumită configurație. Deriva genetică poate cauza dispariția unor alele și poate reduce variabilitatea genetică. Atunci când există puține copii ale unei alele într-o populație, efectul derivei genetice e mai mare, iar când există mai mult copii efectul este mic. Numeroase discuții sunt purtate pe tema importaței acordate selecției naturale în raport cu procesele neutre (aleatoare), cum ar fi deriva genetică. Ronald Fisher susține că driftul genetic poartă un rol
Derivă genetică () [Corola-website/Science/331483_a_332812]
-
copii ale unei alele într-o populație, efectul derivei genetice e mai mare, iar când există mai mult copii efectul este mic. Numeroase discuții sunt purtate pe tema importaței acordate selecției naturale în raport cu procesele neutre (aleatoare), cum ar fi deriva genetică. Ronald Fisher susține că driftul genetic poartă un rol minor în evoluție. În anul 1968 Motoo Kimura a reaprins discuția cu a sa teorie neutră a evoluției moleculare, care susține că majoritatea cazurilor în care o modificare genetică se propagă
Derivă genetică () [Corola-website/Science/331483_a_332812]
-
populație, efectul derivei genetice e mai mare, iar când există mai mult copii efectul este mic. Numeroase discuții sunt purtate pe tema importaței acordate selecției naturale în raport cu procesele neutre (aleatoare), cum ar fi deriva genetică. Ronald Fisher susține că driftul genetic poartă un rol minor în evoluție. În anul 1968 Motoo Kimura a reaprins discuția cu a sa teorie neutră a evoluției moleculare, care susține că majoritatea cazurilor în care o modificare genetică se propagă într-o populație sunt cauzate de
Derivă genetică () [Corola-website/Science/331483_a_332812]
-
fi deriva genetică. Ronald Fisher susține că driftul genetic poartă un rol minor în evoluție. În anul 1968 Motoo Kimura a reaprins discuția cu a sa teorie neutră a evoluției moleculare, care susține că majoritatea cazurilor în care o modificare genetică se propagă într-o populație sunt cauzate de deriva genetică. Procesul prin care se produce deriva genetică poate fi ilustrat folosind 20 de pietricele care reprezintă 20 de organisme dintr-o populație. Borcanul cu pietricele reprezintă populația inițială. Jumătate dintre
Derivă genetică () [Corola-website/Science/331483_a_332812]
-
un rol minor în evoluție. În anul 1968 Motoo Kimura a reaprins discuția cu a sa teorie neutră a evoluției moleculare, care susține că majoritatea cazurilor în care o modificare genetică se propagă într-o populație sunt cauzate de deriva genetică. Procesul prin care se produce deriva genetică poate fi ilustrat folosind 20 de pietricele care reprezintă 20 de organisme dintr-o populație. Borcanul cu pietricele reprezintă populația inițială. Jumătate dintre pietricele sunt roșii și jumătate sunt albastre, fiecare culoare corespunzând
Derivă genetică () [Corola-website/Science/331483_a_332812]
-
1968 Motoo Kimura a reaprins discuția cu a sa teorie neutră a evoluției moleculare, care susține că majoritatea cazurilor în care o modificare genetică se propagă într-o populație sunt cauzate de deriva genetică. Procesul prin care se produce deriva genetică poate fi ilustrat folosind 20 de pietricele care reprezintă 20 de organisme dintr-o populație. Borcanul cu pietricele reprezintă populația inițială. Jumătate dintre pietricele sunt roșii și jumătate sunt albastre, fiecare culoare corespunzând uneia din cele două alele ale unei
Derivă genetică () [Corola-website/Science/331483_a_332812]
-
se repetă un anumit număr de ori, prin reproducerea unei noi generații de pietricele din generația anterioară. Numărul pietricelelor roșii și albastre fluctuează: câteodată sunt mai multe pietricele roșii și câteodată sunt mai multe pietricele albastre. Fluctuația este analoagă derivei genetice. Se poate întâmpla ca la o anumită generație pietricelele de o anumită culoare să nu fie alese pentru a se reproduce. În acest exemplu, dacă nici o pietricică roșie nu este aleasă, borcanul care reprezintă noua generație va conține numai urmași
Derivă genetică () [Corola-website/Science/331483_a_332812]
-
numai urmași albaștri. Alelele roșii se vor fi pierdut permanent din populație, pe când alelele albastre s-au fixat: toate viitoarele generații vor fi albastre. În cazul populațiilor de dimensiuni mici, fixarea poate avea loc în doar câteva generații. Mecanismul derivei genetice poate fi ilustrat cu un exemplu simplu. Într-o colonie foarte mare de bacterii izolate dintr-o soluție, bacteriile sunt identice din punct de vedere genetic, cu excepția unei singure gene a cărei alele sunt A și B. Jumătate dintre bacterii
Derivă genetică () [Corola-website/Science/331483_a_332812]
-
populațiilor de dimensiuni mici, fixarea poate avea loc în doar câteva generații. Mecanismul derivei genetice poate fi ilustrat cu un exemplu simplu. Într-o colonie foarte mare de bacterii izolate dintr-o soluție, bacteriile sunt identice din punct de vedere genetic, cu excepția unei singure gene a cărei alele sunt A și B. Jumătate dintre bacterii au gena alelă A, iar cealaltă jumătate are gena alelă B. Deci atât A cât și B au frecvențele alelelor 1/2. A și B sunt
Derivă genetică () [Corola-website/Science/331483_a_332812]
-
poate fi reprezentat folosind coeficienți binomiali care pot fi derivați din triunghiul lui Pascal. Probabilitatea oricărei combinații poate fi calculată cu formula unde "N" etse numărul de bacterii, iar "k" este numărul de alele A (sau B) din combinație. Deriva genetică are loc atunci când, în urma unor evenimente aleatoare, se schimbă frecvența alelelor dintr-o populație. În acest exemplu, populația s-a micșorat la numai 4 membri, fenomen cunoscut sub numele de Efectul „gâtului de sticlă”. Populația avea la început o distribuție
Derivă genetică () [Corola-website/Science/331483_a_332812]
-
cunoscut sub numele de Efectul „gâtului de sticlă”. Populația avea la început o distribuție egală de alele A și B, dar șansele sunt ca subpopulația supraviețuitoare de 4 bacterii să fie distribuită inegal. Probabilitatea ca subpopulația să fie supusă derivei genetice (10/ 16) este mai mare decât probabilitatea ca subpopulația să-și păstreze distribuția inițială (6/16). Modele matematice care descriu deriva genetică pot fi construite fie prin ecuații de difuzie , fie prin procese Markov de tipul "branching processes" (în limba
Derivă genetică () [Corola-website/Science/331483_a_332812]
-
sunt ca subpopulația supraviețuitoare de 4 bacterii să fie distribuită inegal. Probabilitatea ca subpopulația să fie supusă derivei genetice (10/ 16) este mai mare decât probabilitatea ca subpopulația să-și păstreze distribuția inițială (6/16). Modele matematice care descriu deriva genetică pot fi construite fie prin ecuații de difuzie , fie prin procese Markov de tipul "branching processes" (în limba engleză). Pornim de la o genă cu două alele, A și B. În populațiile diploide cu "N" indivizi există 2"N" copii ale
Derivă genetică () [Corola-website/Science/331483_a_332812]
-
rezultate similare calitativ. Schimbările aleatoare ale frecvenței alelelor se pot datora și altor cauze, nu numai erorilor de eșantionare; un exemplu ar fi schimbările aleatoare ale presiunii de selecție. O altă sursă importantă de stocasticitate, poate mai importantă decât deriva genetică, este autostopul genetic . Legea Hardy-Weinberg susține că în populații suficient de mari frecvența alelelor rămâne constantă de la o generație la alta, afară de cazurile în care apar migrația, mutațiile sau selecția. Populațiile nu dobândesc alele noi prin selecție, dar selecția poate
Derivă genetică () [Corola-website/Science/331483_a_332812]
-
Schimbările aleatoare ale frecvenței alelelor se pot datora și altor cauze, nu numai erorilor de eșantionare; un exemplu ar fi schimbările aleatoare ale presiunii de selecție. O altă sursă importantă de stocasticitate, poate mai importantă decât deriva genetică, este autostopul genetic . Legea Hardy-Weinberg susține că în populații suficient de mari frecvența alelelor rămâne constantă de la o generație la alta, afară de cazurile în care apar migrația, mutațiile sau selecția. Populațiile nu dobândesc alele noi prin selecție, dar selecția poate cauza dispariția unor
Derivă genetică () [Corola-website/Science/331483_a_332812]
-
în care apar migrația, mutațiile sau selecția. Populațiile nu dobândesc alele noi prin selecție, dar selecția poate cauza dispariția unor alele deja existente. Deoarece selecția poate elimina o alelă și pentru că scăderea și creșterea frecvenței alelelor influențează distribuția alelelor, deriva genetică poate duce la uniformizarea genetică a populație de-a lungul timpului. Când o alelă are frecvența 1 (100%) se spune că ea a fost fixată în populație iar când o alelă are frecvența 0, ea a fost eliminată. Când o
Derivă genetică () [Corola-website/Science/331483_a_332812]
-
sau selecția. Populațiile nu dobândesc alele noi prin selecție, dar selecția poate cauza dispariția unor alele deja existente. Deoarece selecția poate elimina o alelă și pentru că scăderea și creșterea frecvenței alelelor influențează distribuția alelelor, deriva genetică poate duce la uniformizarea genetică a populație de-a lungul timpului. Când o alelă are frecvența 1 (100%) se spune că ea a fost fixată în populație iar când o alelă are frecvența 0, ea a fost eliminată. Când o alelă se fixează, deriva genetică
Derivă genetică () [Corola-website/Science/331483_a_332812]
-
genetică a populație de-a lungul timpului. Când o alelă are frecvența 1 (100%) se spune că ea a fost fixată în populație iar când o alelă are frecvența 0, ea a fost eliminată. Când o alelă se fixează, deriva genetică se oprește, iar frecvența alelelor nu se poate schimba decăt dacă o noua alelă este introdusă fie prin migrație, fie prin mutație. Chiar și atunci când deriva genetică apare ca un proces aleator, în timp ea elimină variația genetică. Presupunând că
Derivă genetică () [Corola-website/Science/331483_a_332812]
-
are frecvența 0, ea a fost eliminată. Când o alelă se fixează, deriva genetică se oprește, iar frecvența alelelor nu se poate schimba decăt dacă o noua alelă este introdusă fie prin migrație, fie prin mutație. Chiar și atunci când deriva genetică apare ca un proces aleator, în timp ea elimină variația genetică. Presupunând că deriva genetică este singura forță care acționează asupra unei alele, după "t" generații, pornind de la frecvențele "p" și "q", variația frecvenței alelelor în populație este Legea numerelor
Derivă genetică () [Corola-website/Science/331483_a_332812]
-
fixează, deriva genetică se oprește, iar frecvența alelelor nu se poate schimba decăt dacă o noua alelă este introdusă fie prin migrație, fie prin mutație. Chiar și atunci când deriva genetică apare ca un proces aleator, în timp ea elimină variația genetică. Presupunând că deriva genetică este singura forță care acționează asupra unei alele, după "t" generații, pornind de la frecvențele "p" și "q", variația frecvenței alelelor în populație este Legea numerelor mari susține că într-o populație mare deriva genetică nu provoacă
Derivă genetică () [Corola-website/Science/331483_a_332812]
-
oprește, iar frecvența alelelor nu se poate schimba decăt dacă o noua alelă este introdusă fie prin migrație, fie prin mutație. Chiar și atunci când deriva genetică apare ca un proces aleator, în timp ea elimină variația genetică. Presupunând că deriva genetică este singura forță care acționează asupra unei alele, după "t" generații, pornind de la frecvențele "p" și "q", variația frecvenței alelelor în populație este Legea numerelor mari susține că într-o populație mare deriva genetică nu provoacă schimbări semnificative. Într-o
Derivă genetică () [Corola-website/Science/331483_a_332812]
-
elimină variația genetică. Presupunând că deriva genetică este singura forță care acționează asupra unei alele, după "t" generații, pornind de la frecvențele "p" și "q", variația frecvenței alelelor în populație este Legea numerelor mari susține că într-o populație mare deriva genetică nu provoacă schimbări semnificative. Într-o populație mică, erorile de eșantionare pot modifica frecvența alelelor în mod semnificativ. Deci, deriva genetică este un mecanism evolutiv cu efecte majore în populațiile mici. Cu toate că ambele procese afectează cursul evoluției, deriva genetică acționează
Derivă genetică () [Corola-website/Science/331483_a_332812]
-
p" și "q", variația frecvenței alelelor în populație este Legea numerelor mari susține că într-o populație mare deriva genetică nu provoacă schimbări semnificative. Într-o populație mică, erorile de eșantionare pot modifica frecvența alelelor în mod semnificativ. Deci, deriva genetică este un mecanism evolutiv cu efecte majore în populațiile mici. Cu toate că ambele procese afectează cursul evoluției, deriva genetică acționează în mod aleatoriu, în timp ce selecția naturală nu este aleatoare. În timp ce selecția naturală este direcționată, ghidând procesul evoluției spre caracteristici moștenite, care
Derivă genetică () [Corola-website/Science/331483_a_332812]