3,733 matches
-
nevoie de teoria proporțiilor, un subiect netratat până la publicarea lucrării "Elemente", astfel că teoria proporțiilor avea nevoie de o dezvoltare mai mare la aceea vreme. În mare parte, acesta este modul în care demonstrația lui Euclid din "Elemente" are loc. Pătratul mare este divizat în două dreptunghiuri, unul în stânga, iar altul în dreapta. Apoi, alt triunghi este construit astfel încât acesta să aibă jumătate din suprafața pătratului din partea stângă. Aceste două triunghiuri sunt congruente, ceea ce demonstrează faptul că acest pătrat are aceeași suprafață
Teorema lui Pitagora () [Corola-website/Science/298476_a_299805]
-
vreme. În mare parte, acesta este modul în care demonstrația lui Euclid din "Elemente" are loc. Pătratul mare este divizat în două dreptunghiuri, unul în stânga, iar altul în dreapta. Apoi, alt triunghi este construit astfel încât acesta să aibă jumătate din suprafața pătratului din partea stângă. Aceste două triunghiuri sunt congruente, ceea ce demonstrează faptul că acest pătrat are aceeași suprafață ca și dreptunghiul din stânga. O versiune analogă este valabilă și pentru dreptunghiul din partea dreaptă și pentru pătratul rămas. Recombinând cele două dreptunghiuri pentru a
Teorema lui Pitagora () [Corola-website/Science/298476_a_299805]
-
Elemente" are loc. Pătratul mare este divizat în două dreptunghiuri, unul în stânga, iar altul în dreapta. Apoi, alt triunghi este construit astfel încât acesta să aibă jumătate din suprafața pătratului din partea stângă. Aceste două triunghiuri sunt congruente, ceea ce demonstrează faptul că acest pătrat are aceeași suprafață ca și dreptunghiul din stânga. O versiune analogă este valabilă și pentru dreptunghiul din partea dreaptă și pentru pătratul rămas. Recombinând cele două dreptunghiuri pentru a forma pătratul pe ipotenuză, suprafața sa este aceeași cu suma suprafețelor celor două
Teorema lui Pitagora () [Corola-website/Science/298476_a_299805]
-
astfel încât acesta să aibă jumătate din suprafața pătratului din partea stângă. Aceste două triunghiuri sunt congruente, ceea ce demonstrează faptul că acest pătrat are aceeași suprafață ca și dreptunghiul din stânga. O versiune analogă este valabilă și pentru dreptunghiul din partea dreaptă și pentru pătratul rămas. Recombinând cele două dreptunghiuri pentru a forma pătratul pe ipotenuză, suprafața sa este aceeași cu suma suprafețelor celor două pătrate. În continuare se află detaliile. Fie "A", "B", "C" vârfurile unui triunghi dreptunghic, în care unghiul drept să fie
Teorema lui Pitagora () [Corola-website/Science/298476_a_299805]
-
stângă. Aceste două triunghiuri sunt congruente, ceea ce demonstrează faptul că acest pătrat are aceeași suprafață ca și dreptunghiul din stânga. O versiune analogă este valabilă și pentru dreptunghiul din partea dreaptă și pentru pătratul rămas. Recombinând cele două dreptunghiuri pentru a forma pătratul pe ipotenuză, suprafața sa este aceeași cu suma suprafețelor celor două pătrate. În continuare se află detaliile. Fie "A", "B", "C" vârfurile unui triunghi dreptunghic, în care unghiul drept să fie "A". Se trasează perpendiculara din punctul "A" prin ipotenuză
Teorema lui Pitagora () [Corola-website/Science/298476_a_299805]
-
are aceeași suprafață ca și dreptunghiul din stânga. O versiune analogă este valabilă și pentru dreptunghiul din partea dreaptă și pentru pătratul rămas. Recombinând cele două dreptunghiuri pentru a forma pătratul pe ipotenuză, suprafața sa este aceeași cu suma suprafețelor celor două pătrate. În continuare se află detaliile. Fie "A", "B", "C" vârfurile unui triunghi dreptunghic, în care unghiul drept să fie "A". Se trasează perpendiculara din punctul "A" prin ipotenuză, până pe latura opusă ipotenuzei, din pătrat. Dreapta desparte pătratul respectiv în două
Teorema lui Pitagora () [Corola-website/Science/298476_a_299805]
-
aceeași cu suma suprafețelor celor două pătrate. În continuare se află detaliile. Fie "A", "B", "C" vârfurile unui triunghi dreptunghic, în care unghiul drept să fie "A". Se trasează perpendiculara din punctul "A" prin ipotenuză, până pe latura opusă ipotenuzei, din pătrat. Dreapta desparte pătratul respectiv în două dreptunghiuri, fiecare având aceeași suprafață cu unul dintre pătratele de pe catete. Pentru demonstrația formală, se recurge la patru leme elementare: atunci triunghiurile sunt congruente. În continuare, fiecare dintre pătratele de sus se află în legătură cu
Teorema lui Pitagora () [Corola-website/Science/298476_a_299805]
-
suprafețelor celor două pătrate. În continuare se află detaliile. Fie "A", "B", "C" vârfurile unui triunghi dreptunghic, în care unghiul drept să fie "A". Se trasează perpendiculara din punctul "A" prin ipotenuză, până pe latura opusă ipotenuzei, din pătrat. Dreapta desparte pătratul respectiv în două dreptunghiuri, fiecare având aceeași suprafață cu unul dintre pătratele de pe catete. Pentru demonstrația formală, se recurge la patru leme elementare: atunci triunghiurile sunt congruente. În continuare, fiecare dintre pătratele de sus se află în legătură cu un triunghi congruent
Teorema lui Pitagora () [Corola-website/Science/298476_a_299805]
-
C" vârfurile unui triunghi dreptunghic, în care unghiul drept să fie "A". Se trasează perpendiculara din punctul "A" prin ipotenuză, până pe latura opusă ipotenuzei, din pătrat. Dreapta desparte pătratul respectiv în două dreptunghiuri, fiecare având aceeași suprafață cu unul dintre pătratele de pe catete. Pentru demonstrația formală, se recurge la patru leme elementare: atunci triunghiurile sunt congruente. În continuare, fiecare dintre pătratele de sus se află în legătură cu un triunghi congruent cu alt triunghi aflat la rândul său în legătură cu unul dintre cele două
Teorema lui Pitagora () [Corola-website/Science/298476_a_299805]
-
până pe latura opusă ipotenuzei, din pătrat. Dreapta desparte pătratul respectiv în două dreptunghiuri, fiecare având aceeași suprafață cu unul dintre pătratele de pe catete. Pentru demonstrația formală, se recurge la patru leme elementare: atunci triunghiurile sunt congruente. În continuare, fiecare dintre pătratele de sus se află în legătură cu un triunghi congruent cu alt triunghi aflat la rândul său în legătură cu unul dintre cele două dreptunghiuri care alcătuiesc pătratul de jos. Demonstrația este următoarea: Această demonstrație, care apare în "Elementele" lui Euclid, sub forma Propoziției
Teorema lui Pitagora () [Corola-website/Science/298476_a_299805]
-
demonstrația formală, se recurge la patru leme elementare: atunci triunghiurile sunt congruente. În continuare, fiecare dintre pătratele de sus se află în legătură cu un triunghi congruent cu alt triunghi aflat la rândul său în legătură cu unul dintre cele două dreptunghiuri care alcătuiesc pătratul de jos. Demonstrația este următoarea: Această demonstrație, care apare în "Elementele" lui Euclid, sub forma Propoziției 47 din Cartea 1, arată faptul că suprafața pătratului de pe ipotenuză este suma suprafețelor celor două pătrate mici. Această demonstrație este una destul de diferită
Teorema lui Pitagora () [Corola-website/Science/298476_a_299805]
-
cu alt triunghi aflat la rândul său în legătură cu unul dintre cele două dreptunghiuri care alcătuiesc pătratul de jos. Demonstrația este următoarea: Această demonstrație, care apare în "Elementele" lui Euclid, sub forma Propoziției 47 din Cartea 1, arată faptul că suprafața pătratului de pe ipotenuză este suma suprafețelor celor două pătrate mici. Această demonstrație este una destul de diferită față de cea folosind asemănarea triunghiurilor, care folosește posibila metoda de demonstrație a Pitagora. Suprafețele ambelor pătrate mari sunt egale cu formula 6. Dacă suprafețele pătratelor roz
Teorema lui Pitagora () [Corola-website/Science/298476_a_299805]
-
unul dintre cele două dreptunghiuri care alcătuiesc pătratul de jos. Demonstrația este următoarea: Această demonstrație, care apare în "Elementele" lui Euclid, sub forma Propoziției 47 din Cartea 1, arată faptul că suprafața pătratului de pe ipotenuză este suma suprafețelor celor două pătrate mici. Această demonstrație este una destul de diferită față de cea folosind asemănarea triunghiurilor, care folosește posibila metoda de demonstrație a Pitagora. Suprafețele ambelor pătrate mari sunt egale cu formula 6. Dacă suprafețele pătratelor roz, ce reprezintă pătratele numerelor formula 7 și formula 8 (figura
Teorema lui Pitagora () [Corola-website/Science/298476_a_299805]
-
Propoziției 47 din Cartea 1, arată faptul că suprafața pătratului de pe ipotenuză este suma suprafețelor celor două pătrate mici. Această demonstrație este una destul de diferită față de cea folosind asemănarea triunghiurilor, care folosește posibila metoda de demonstrație a Pitagora. Suprafețele ambelor pătrate mari sunt egale cu formula 6. Dacă suprafețele pătratelor roz, ce reprezintă pătratele numerelor formula 7 și formula 8 (figura din stânga) sunt substituite cu un pătrat ce reprezintă numărul formula 9 la pătrat, făcându-se simultan o rearanjare a jumătăților celor două dreptunghiuri (fiecare
Teorema lui Pitagora () [Corola-website/Science/298476_a_299805]
-
suprafața pătratului de pe ipotenuză este suma suprafețelor celor două pătrate mici. Această demonstrație este una destul de diferită față de cea folosind asemănarea triunghiurilor, care folosește posibila metoda de demonstrație a Pitagora. Suprafețele ambelor pătrate mari sunt egale cu formula 6. Dacă suprafețele pătratelor roz, ce reprezintă pătratele numerelor formula 7 și formula 8 (figura din stânga) sunt substituite cu un pătrat ce reprezintă numărul formula 9 la pătrat, făcându-se simultan o rearanjare a jumătăților celor două dreptunghiuri (fiecare fiind format inițial din câte două triunghiuri dreptunghice
Teorema lui Pitagora () [Corola-website/Science/298476_a_299805]
-
este suma suprafețelor celor două pătrate mici. Această demonstrație este una destul de diferită față de cea folosind asemănarea triunghiurilor, care folosește posibila metoda de demonstrație a Pitagora. Suprafețele ambelor pătrate mari sunt egale cu formula 6. Dacă suprafețele pătratelor roz, ce reprezintă pătratele numerelor formula 7 și formula 8 (figura din stânga) sunt substituite cu un pătrat ce reprezintă numărul formula 9 la pătrat, făcându-se simultan o rearanjare a jumătăților celor două dreptunghiuri (fiecare fiind format inițial din câte două triunghiuri dreptunghice, congruente cu cel inițial
Teorema lui Pitagora () [Corola-website/Science/298476_a_299805]
-
destul de diferită față de cea folosind asemănarea triunghiurilor, care folosește posibila metoda de demonstrație a Pitagora. Suprafețele ambelor pătrate mari sunt egale cu formula 6. Dacă suprafețele pătratelor roz, ce reprezintă pătratele numerelor formula 7 și formula 8 (figura din stânga) sunt substituite cu un pătrat ce reprezintă numărul formula 9 la pătrat, făcându-se simultan o rearanjare a jumătăților celor două dreptunghiuri (fiecare fiind format inițial din câte două triunghiuri dreptunghice, congruente cu cel inițial), se obține figura din dreapta. Suprafețele celor două pătrate mari sunt identice
Teorema lui Pitagora () [Corola-website/Science/298476_a_299805]
-
triunghiurilor, care folosește posibila metoda de demonstrație a Pitagora. Suprafețele ambelor pătrate mari sunt egale cu formula 6. Dacă suprafețele pătratelor roz, ce reprezintă pătratele numerelor formula 7 și formula 8 (figura din stânga) sunt substituite cu un pătrat ce reprezintă numărul formula 9 la pătrat, făcându-se simultan o rearanjare a jumătăților celor două dreptunghiuri (fiecare fiind format inițial din câte două triunghiuri dreptunghice, congruente cu cel inițial), se obține figura din dreapta. Suprafețele celor două pătrate mari sunt identice, întrucât laturile acestora sunt congruente. Calculând
Teorema lui Pitagora () [Corola-website/Science/298476_a_299805]
-
substituite cu un pătrat ce reprezintă numărul formula 9 la pătrat, făcându-se simultan o rearanjare a jumătăților celor două dreptunghiuri (fiecare fiind format inițial din câte două triunghiuri dreptunghice, congruente cu cel inițial), se obține figura din dreapta. Suprafețele celor două pătrate mari sunt identice, întrucât laturile acestora sunt congruente. Calculând în fiecare caz suprafețele celor două pătrate, se obține: Se ajunge așadar la formula 12, ceea ce duce direct la relația din teorema studiată. Demonstrația pitagoreică, care a fost deja discutată, a fost
Teorema lui Pitagora () [Corola-website/Science/298476_a_299805]
-
jumătăților celor două dreptunghiuri (fiecare fiind format inițial din câte două triunghiuri dreptunghice, congruente cu cel inițial), se obține figura din dreapta. Suprafețele celor două pătrate mari sunt identice, întrucât laturile acestora sunt congruente. Calculând în fiecare caz suprafețele celor două pătrate, se obține: Se ajunge așadar la formula 12, ceea ce duce direct la relația din teorema studiată. Demonstrația pitagoreică, care a fost deja discutată, a fost o demonstrație prin rearanjare. Aceeași idee este reprezentată în animația din partea stângă, care conține pătratul mare
Teorema lui Pitagora () [Corola-website/Science/298476_a_299805]
-
două pătrate, se obține: Se ajunge așadar la formula 12, ceea ce duce direct la relația din teorema studiată. Demonstrația pitagoreică, care a fost deja discutată, a fost o demonstrație prin rearanjare. Aceeași idee este reprezentată în animația din partea stângă, care conține pătratul mare de latură , cu patru triunghiuri dreptunghice identice. Triunghiurile sunt reprezentate alternativ în două moduri de aranjare, în primul în care sunt arătate cele două pătrate mici "a" și "b", iar în al doilea în care este arătat pătratul "c
Teorema lui Pitagora () [Corola-website/Science/298476_a_299805]
-
o demonstrație prin rearanjare. Aceeași idee este reprezentată în animația din partea stângă, care conține pătratul mare de latură , cu patru triunghiuri dreptunghice identice. Triunghiurile sunt reprezentate alternativ în două moduri de aranjare, în primul în care sunt arătate cele două pătrate mici "a" și "b", iar în al doilea în care este arătat pătratul "c". Suprafața cuprinsă de pătratul exterior nu se schimbă, iar suprafața celor patru triunghiuri este aceeași și la începutul rearanjării, dar și după, așadar suprafețele pătratelor negre
Teorema lui Pitagora () [Corola-website/Science/298476_a_299805]
-
conține pătratul mare de latură , cu patru triunghiuri dreptunghice identice. Triunghiurile sunt reprezentate alternativ în două moduri de aranjare, în primul în care sunt arătate cele două pătrate mici "a" și "b", iar în al doilea în care este arătat pătratul "c". Suprafața cuprinsă de pătratul exterior nu se schimbă, iar suprafața celor patru triunghiuri este aceeași și la începutul rearanjării, dar și după, așadar suprafețele pătratelor negre sunt egale. Astfel, ajungem la rezultatul O a doua demonstrație prin rearanjare este
Teorema lui Pitagora () [Corola-website/Science/298476_a_299805]
-
cu patru triunghiuri dreptunghice identice. Triunghiurile sunt reprezentate alternativ în două moduri de aranjare, în primul în care sunt arătate cele două pătrate mici "a" și "b", iar în al doilea în care este arătat pătratul "c". Suprafața cuprinsă de pătratul exterior nu se schimbă, iar suprafața celor patru triunghiuri este aceeași și la începutul rearanjării, dar și după, așadar suprafețele pătratelor negre sunt egale. Astfel, ajungem la rezultatul O a doua demonstrație prin rearanjare este reprezentată de animația din mijloc
Teorema lui Pitagora () [Corola-website/Science/298476_a_299805]
-
două pătrate mici "a" și "b", iar în al doilea în care este arătat pătratul "c". Suprafața cuprinsă de pătratul exterior nu se schimbă, iar suprafața celor patru triunghiuri este aceeași și la începutul rearanjării, dar și după, așadar suprafețele pătratelor negre sunt egale. Astfel, ajungem la rezultatul O a doua demonstrație prin rearanjare este reprezentată de animația din mijloc. Un pătrat mare este format din suprafața "c",din patru triunghiuri dreptunghice identice de laturi "a", "b" și "c", amplasate în jurul
Teorema lui Pitagora () [Corola-website/Science/298476_a_299805]