4,125 matches
-
să aibă aceeași lungime de undă cu cea incidentă. Efectul Compton a fost explicat considerând natura corpusculară a energiei electromagnetice. Noutatea a constat în introducerea impulsului pentru cuanta de energie. Pentru justificarea fenomenului se consideră că fotonii incidenți ciocnesc elastic electronii din blocul de grafit. Astfel se conservă atât energia sistemului cât și impulsul acestuia. Din legea conservării energiei obținem unde Electronii atomilor ușori și cei din păturile periferice ale atomilor grei pot fi considerați liberi întrucât energia fotonului incident este
Dualismul corpuscul-undă () [Corola-website/Science/299498_a_300827]
-
a constat în introducerea impulsului pentru cuanta de energie. Pentru justificarea fenomenului se consideră că fotonii incidenți ciocnesc elastic electronii din blocul de grafit. Astfel se conservă atât energia sistemului cât și impulsul acestuia. Din legea conservării energiei obținem unde Electronii atomilor ușori și cei din păturile periferice ale atomilor grei pot fi considerați liberi întrucât energia fotonului incident este de aproximativ 1550 de ori mai mare decât lucrul mecanic de extracție. Așadar, termenulformula 25 poate fi neglijat. Expresia energiei cinetice este
Dualismul corpuscul-undă () [Corola-website/Science/299498_a_300827]
-
că rezultatul teoriei elaborate de Compton este identic cu legea obținută experimental. În concluzie, efectul descoperit de acesta confirmă încă o dată natura corpusculară a radiațiilor electromagnetice. În 1927, Clinton Joseph Davisson și Lester Halbert Germer au evidențiat comportamentul ondulatoriu al electronilor. Experimentul lor a fost una dintre cele mai importante confirmări a ipotezei lui de Broglie. Ei au utilizat un tun electronic ce trimitea un fascicul de electroni, accelerați sub o diferență de potențial U, pe un monocristal de nichel. Acesta
Dualismul corpuscul-undă () [Corola-website/Science/299498_a_300827]
-
1927, Clinton Joseph Davisson și Lester Halbert Germer au evidențiat comportamentul ondulatoriu al electronilor. Experimentul lor a fost una dintre cele mai importante confirmări a ipotezei lui de Broglie. Ei au utilizat un tun electronic ce trimitea un fascicul de electroni, accelerați sub o diferență de potențial U, pe un monocristal de nichel. Acesta se comportă ca o rețea de difracție, facând posibilă observarea unei figuri de interferență. Conform teoriei difracției, se obține o valoare maximă a intensității undelor rezultate pentru
Dualismul corpuscul-undă () [Corola-website/Science/299498_a_300827]
-
important și pentru proprietățile sale foto-emisive, prin care energia luminii este convertită în flux electric. Mai este folosit și în panourile solare, deoarece catozii pe bază de cesiu, cum ar fi cel din , au o tensiune de prag pentru emisia electronilor foarte redusă. Prin dispozitivele foto-emisive pe bază de cesiu menționăm aparatele pentru recunoașterea optică a caracterelor, fotomultiplicatorii și camere video (mai exact, tubul de la acestea). În ciuda acestor fapte, elementele precum germaniul, rubidiul, seleniul, siliciul, telurul și altele pot substitui cesiul
Cesiu () [Corola-website/Science/304474_a_305803]
-
fenomene fizice ce fac parte din ansamblul general al interacțiunilor fundamentale, dar sunt conceptual diferite de forțe, pot fi descrise pe baza acelorași reguli. De exemplu, o diagramă Feynman poate descrie pe scurt cum un neutron se dezintegrează, rezultând un electron, un proton, și un neutrino, interacțiune mijlocită de aceeași particulă purtătoare responsabilă pentru forța nucleară slabă. În teoria relativității restrânse, masa și energia sunt echivalente (după cum se vede calculând lucrul mecanic necesar pentru a accelera un obiect). Când viteza unui
Forță () [Corola-website/Science/304451_a_305780]
-
care descrie toate interacțiunile legate de electromagnetism, inclusiv forța electromagnetică. Adesea, în mod greșit, rigiditatea solidelor este atribuită respingerii sarcinilor de același semn sub influența forței electromagnetice. Aceste caracteristici rezultă, în realitate, din principiul de excluziune al lui Pauli. Deoarece electronii sunt fermioni, ei nu pot ocupa aceeași stare cuantică în același timp cu alți electroni. Când electronii dintr-un material sunt presați împreună, nu există suficiente stări cuantice de energie joasă pentru a fi ocupate de toți, deci unii dintre
Forță () [Corola-website/Science/304451_a_305780]
-
solidelor este atribuită respingerii sarcinilor de același semn sub influența forței electromagnetice. Aceste caracteristici rezultă, în realitate, din principiul de excluziune al lui Pauli. Deoarece electronii sunt fermioni, ei nu pot ocupa aceeași stare cuantică în același timp cu alți electroni. Când electronii dintr-un material sunt presați împreună, nu există suficiente stări cuantice de energie joasă pentru a fi ocupate de toți, deci unii dintre ei trebuie să rămână în stări de energie superioară. Aceasta înseamnă că este nevoie de
Forță () [Corola-website/Science/304451_a_305780]
-
atribuită respingerii sarcinilor de același semn sub influența forței electromagnetice. Aceste caracteristici rezultă, în realitate, din principiul de excluziune al lui Pauli. Deoarece electronii sunt fermioni, ei nu pot ocupa aceeași stare cuantică în același timp cu alți electroni. Când electronii dintr-un material sunt presați împreună, nu există suficiente stări cuantice de energie joasă pentru a fi ocupate de toți, deci unii dintre ei trebuie să rămână în stări de energie superioară. Aceasta înseamnă că este nevoie de energie ca
Forță () [Corola-website/Science/304451_a_305780]
-
stări de energie superioară. Aceasta înseamnă că este nevoie de energie ca ei să fie strânși împreună. Deși acest efect se manifestă macroscopic ca o „forță” structurală, aceasta este, de fapt, doar rezultatul existenței unui set finit de stări pentru electroni. Există două forțe nucleare care sunt descrise ca interacțiuni ce au loc în teoriile cuantice din fizica particulelor. Forța nucleară tare este forța responsabilă cu menținerea integrității structurale a nucleelor atomice în vreme ce forța nucleară slabă este răspunzătoare pentru dezagregarea anumiților
Forță () [Corola-website/Science/304451_a_305780]
-
Big Bangului. Unele forțe sunt consecințe ale forțelor fundamentale, dar au nevoie de modele idealizate pentru a fi înțelese în profunzime și folosite în aplicații. Forța normală este forța de respingere între atomii aflați în contact strâns. Când norii de electroni ai atomilor aflați în apropiere se suprapun, respingerea Pauli (cauzată de natura de fermioni a electronilor) are ca rezultat forța ce acționează normal la suprafața de contact între două obiecte. Forța normală, de exemplu, este responsabilă pentru integritatea structurală a
Forță () [Corola-website/Science/304451_a_305780]
-
a fi înțelese în profunzime și folosite în aplicații. Forța normală este forța de respingere între atomii aflați în contact strâns. Când norii de electroni ai atomilor aflați în apropiere se suprapun, respingerea Pauli (cauzată de natura de fermioni a electronilor) are ca rezultat forța ce acționează normal la suprafața de contact între două obiecte. Forța normală, de exemplu, este responsabilă pentru integritatea structurală a meselor și clădirilor, și este forța ce răspunde atunci când o forță exterioară apasă un obiect solid
Forță () [Corola-website/Science/304451_a_305780]
-
de helixul proteic prin intermediul unei legături coordinative între ionul de Fe și lanțul proteic.În cazul hemoglobinei legătura coordinativă este realizată cu histidina,în timp ce NOS (sintaza oxidului de azot) și citocromul P450 realizează legătura cu cisteina.Datorită existenței unui singur electron la atomul de Fe, are poate fi legat printr-o legătura coordinativă cu proteina, fierul adoptă o stare de pentacoordinare, în timp ce în cazul legării oxigenului sau monoxidului de carbon , fierul este hexacoordinat. Diferența față de hemul B este oxidarea lanțului metilic
Hem () [Corola-website/Science/304545_a_305874]
-
toluidinei cu etoxid de sodiu la 400 C, pe parcursul anilor ea mai suferă modificări: Verley 1924(catalizator amidura de sodiu), Tyson 1941 (catalizator terțbutoxidul de potasiu). Inelul pirolic are o reactivitate mult mai mare față de nucleul benzenic, acest fapt datorîndu-se electronilor neparticipanți ai atomului de azot, electroni neparticipanți care sunt delocalizați.Conform valorii pK=3,6 acizii tari de tipul acidului clorhidric por protona acest atom de N din nucleul indolic. La indol, spre deosebire de pirol, poziția cea mai reactivă este poziția
Indol () [Corola-website/Science/304582_a_305911]
-
400 C, pe parcursul anilor ea mai suferă modificări: Verley 1924(catalizator amidura de sodiu), Tyson 1941 (catalizator terțbutoxidul de potasiu). Inelul pirolic are o reactivitate mult mai mare față de nucleul benzenic, acest fapt datorîndu-se electronilor neparticipanți ai atomului de azot, electroni neparticipanți care sunt delocalizați.Conform valorii pK=3,6 acizii tari de tipul acidului clorhidric por protona acest atom de N din nucleul indolic. La indol, spre deosebire de pirol, poziția cea mai reactivă este poziția 3, de 1013ori mai reactivă fața
Indol () [Corola-website/Science/304582_a_305911]
-
la 155GPa să devină complet metalic. Când se "metalizează", xenonul arată albastru-ciel, fiindcă el absoarbe lumina roșie și transmite alte frecvențe vizibile. Acest comportament este neobișnuit și neîntâlnit la metale și se explică prin lățimea relativ mică a benzilor de electroni în xenonul metalic. Xenonul face parte din grupa elementelor cu valența zero, elemente numite generic și "gaze inerte" sau "gaze nobile". Acestea sunt inerte pentru majoritatea reacțiilor chimice (cum ar fi combustia, de exemplu), deoarece electroni de pe stratul de valență
Xenon () [Corola-website/Science/304622_a_305951]
-
mică a benzilor de electroni în xenonul metalic. Xenonul face parte din grupa elementelor cu valența zero, elemente numite generic și "gaze inerte" sau "gaze nobile". Acestea sunt inerte pentru majoritatea reacțiilor chimice (cum ar fi combustia, de exemplu), deoarece electroni de pe stratul de valență sunt în număr de opt. De aceea, xenonul are o configurație foarte stabilă, la fel ca și celelalte gaze, în care electronii de pe stratul de valență sunt strânși legați și nu prea acceptă alte combinații. Totuși
Xenon () [Corola-website/Science/304622_a_305951]
-
Acestea sunt inerte pentru majoritatea reacțiilor chimice (cum ar fi combustia, de exemplu), deoarece electroni de pe stratul de valență sunt în număr de opt. De aceea, xenonul are o configurație foarte stabilă, la fel ca și celelalte gaze, în care electronii de pe stratul de valență sunt strânși legați și nu prea acceptă alte combinații. Totuși, xenonul poate fi oxidat de către compuși oxidanți puternici, și mulți compuși de xenon au putut fi sintetizați astfel. Într-un tub de gaz, xenonul emite o
Xenon () [Corola-website/Science/304622_a_305951]
-
energie, aceștia se resping unii pe alții și nu pot forma o legătură moleculară, așa cum găsim, de altfel, la oxigen sau la brom (O și Br). Totuși, când atomii de xenon devin energizați, ei pot forma excimeri (dimeri excitați) , până când electronii se reîntorc la statutul de energie slab. Această entitate se formează deoarece atomii de xenon tind să umple ultimul strat electronic, și pot face acest lucru prin adăugarea unui electron dintr-un atom vecin de xenon. Timpul tipic de viață
Xenon () [Corola-website/Science/304622_a_305951]
-
xenon devin energizați, ei pot forma excimeri (dimeri excitați) , până când electronii se reîntorc la statutul de energie slab. Această entitate se formează deoarece atomii de xenon tind să umple ultimul strat electronic, și pot face acest lucru prin adăugarea unui electron dintr-un atom vecin de xenon. Timpul tipic de viață al unui excimer de xenon este de 1-5 nanosecunde, iar descompunerea sa eliberează fotoni cu o lungime de undă de aproximativ 150 și 173 nm. Xenonul poate forma, de asemenea
Xenon () [Corola-website/Science/304622_a_305951]
-
acțiunea pozitivă a xenonului în lasere , iar, mai târziu, au descoperit faptul că sporul laserului era îmbunătățit de o mică cantitate de heliu adăugată amestecului. Primul laser cu excimer folosea un dimer de xenon (Xe) stimulat de un grupaj de electroni ce produc o emisie stimulată a unor raze ultraviolete de lungime de undă de 176 nm. Clorura de xenon și fluorura de xenon au fost folosite, de asemenea, în lasere cu excimeri (sau, mai actual, în lasere cu "exciplex"). Laserele
Xenon () [Corola-website/Science/304622_a_305951]
-
soluție de azotat de argint timp de o secundă,depune la catod 0,001118 grame de argint. Amperul internațional a fost înlocuit în anul 1948 cu amperul absolut(amperul electrodinamic). Amperul internațional este 0,99985 din amperul absolut. În raport cu mișcarea electronilor,un amper reprezintă un flux de aproximativ 6,241506×10 electroni. Ca mărime fundamentală, curentul electric nu se definește în raport cu alte mărimi. Curentul electric ca mărime fizică este legat de marimea sarcină electrică sau cantitate de electricitate prin fluxul de
Amper () [Corola-website/Science/303521_a_304850]
-
catod 0,001118 grame de argint. Amperul internațional a fost înlocuit în anul 1948 cu amperul absolut(amperul electrodinamic). Amperul internațional este 0,99985 din amperul absolut. În raport cu mișcarea electronilor,un amper reprezintă un flux de aproximativ 6,241506×10 electroni. Ca mărime fundamentală, curentul electric nu se definește în raport cu alte mărimi. Curentul electric ca mărime fizică este legat de marimea sarcină electrică sau cantitate de electricitate prin fluxul de sarcini electrice care trec printr-o suprafață dată în unitatea de
Amper () [Corola-website/Science/303521_a_304850]
-
sau linii aranjate în șiruri, fiecare caracter sau linie constând din elemente fluorescente sau fosforescente. Aceste elemente sunt montate pe un suport metalizat care este acoperit cu substanțe fluorescente ori cu săruri fosforescente ce produc lumină când sunt bombardate cu electroni ex 8540 89 00 92 Tub de afișaj fluorescent cu vid 0 ex 8540 91 00 31 Tun electronic, pentru utilizare în fabricarea tuburilor catodice color de la 0 subpoziția 8540 40 00, cu o măsură a diagonalei ecranului de 34
by Guvernul Romaniei () [Corola-other/Law/90040_a_90827]
-
8540 99 00 91 Anod, catod sau componentă finală, sau un ansamblu cuprinzând aceste 0 componente (tub central de magnetron), pentru fabricarea magnetroanelor de la subpoziția 8540 71 00 (a) ex 8543 19 00 10 Sisteme de accelerare a fasciculelor de electroni, cu o tensiune de 0 funcționare ce nu depășește 1,5 MV și un curent de fascicul care nu depășește 70 mA ex 8543 89 95 46 Amplificator, constând din elemente active și pasive montate pe un circuit 0 imprimat
by Guvernul Romaniei () [Corola-other/Law/90040_a_90827]