576 matches
-
care funcționează ca anod al unei celule și drept catod al unei alte celule. O celulă primară este un tip special de celulă electrochimică în care reacția nu poate fi inversată, iar identitatea anodului și catodului sunt, prin urmare, fixe. Anodul este întotdeauna electrodul negativ. Celula poate fi descărcată, dar nu poate fi reîncărcată. Un element electric secundar, de exemplu o baterie reîncărcabilă, este o celulă în care reacțiile chimice sunt reversibile. Atunci când celula este în curs de încărcare, anodul devine
Electrod () [Corola-website/Science/310923_a_312252]
-
fixe. Anodul este întotdeauna electrodul negativ. Celula poate fi descărcată, dar nu poate fi reîncărcată. Un element electric secundar, de exemplu o baterie reîncărcabilă, este o celulă în care reacțiile chimice sunt reversibile. Atunci când celula este în curs de încărcare, anodul devine electrod pozitiv (+) (nu ca la primare, negativ), iar catodul electrod negativ (-). Acesta este și cazul într-o celulă electrolitică. Când bateria se descarcă, se comportă ca o celulă primară, cu anodul ca electrod negativ și catodul ca electrod pozitiv
Electrod () [Corola-website/Science/310923_a_312252]
-
reversibile. Atunci când celula este în curs de încărcare, anodul devine electrod pozitiv (+) (nu ca la primare, negativ), iar catodul electrod negativ (-). Acesta este și cazul într-o celulă electrolitică. Când bateria se descarcă, se comportă ca o celulă primară, cu anodul ca electrod negativ și catodul ca electrod pozitiv. Într-un tub cu vid sau un semiconductor având polaritate (diode, condensatori electrolitici), anodul este pozitiv electrod (+) și catodul electrod negativ (-). Electronii intră în dispozitivul respectiv prin catod și ies din el
Electrod () [Corola-website/Science/310923_a_312252]
-
este și cazul într-o celulă electrolitică. Când bateria se descarcă, se comportă ca o celulă primară, cu anodul ca electrod negativ și catodul ca electrod pozitiv. Într-un tub cu vid sau un semiconductor având polaritate (diode, condensatori electrolitici), anodul este pozitiv electrod (+) și catodul electrod negativ (-). Electronii intră în dispozitivul respectiv prin catod și ies din el prin anod. Multe dispozitive au și alți electrozi pentru a controla funcționarea, de exemplu bază, poartă, grilă de control. Într-o celulă
Electrod () [Corola-website/Science/310923_a_312252]
-
electrod negativ și catodul ca electrod pozitiv. Într-un tub cu vid sau un semiconductor având polaritate (diode, condensatori electrolitici), anodul este pozitiv electrod (+) și catodul electrod negativ (-). Electronii intră în dispozitivul respectiv prin catod și ies din el prin anod. Multe dispozitive au și alți electrozi pentru a controla funcționarea, de exemplu bază, poartă, grilă de control. Într-o celulă cu trei electrozi, un contraelectrod, numit de asemenea electrod auxiliar, este folosit doar pentru a realiza conexiunea la electrolit, astfel încât
Electrod () [Corola-website/Science/310923_a_312252]
-
de metal cu gaz sau sudarea cu arc de metal, sau neconsumabil, cum ar fi în sudarea cu arc tungsten-gaz. Pentru un sistem de sudură continuă electrodul de sudură poate fi un catod, pentru o sudură tip de umplere un anod. Pentru sudură cu arc de curent alternativ, electrodul de sudură nu va fi considerată anod sau catod. Wikimedia Commons conține materiale multimedia legate de electrozi.
Electrod () [Corola-website/Science/310923_a_312252]
-
în sudarea cu arc tungsten-gaz. Pentru un sistem de sudură continuă electrodul de sudură poate fi un catod, pentru o sudură tip de umplere un anod. Pentru sudură cu arc de curent alternativ, electrodul de sudură nu va fi considerată anod sau catod. Wikimedia Commons conține materiale multimedia legate de electrozi.
Electrod () [Corola-website/Science/310923_a_312252]
-
g sunt asamblate astfel încât să permită a activa fiecare segment separat, astfel obținând orice cifră. Mai jos sunt câteva exemple: De multe ori apare al optulea segment numit pd (punct zecimal). Display-urile cu șapte segmente snt de două tipuri: "anod comun" și "catod comun". Pentru a controla un display se folosește de obicei un circuit integrat special conceput în acest scop și care simplifica foarte mult designul circuitului. Unul dintre ele este circuitul 74LS47, un circuit integrat ce poate formă
Display de șapte segmente () [Corola-website/Science/330112_a_331441]
-
12 V, tensiunea totală a bateriei în gol fiind de 6 x 2.12 = 12.72 V (pentru o baterie complet încărcată). Cele două piese metalice se numesc electrozi, electrodul pozitiv poartă denumirea de catod iar cel negativ se numește anod. Electronii și electrolitul produc anumite reacții chimice formând astfel energia electrică, astfel, bateria din energia chimică produce curent continuu. În general automobilele cu motor termic sunt echipate cu baterii pe bază de plumb. Datorită prețului scăzut și a curentului mare
Baterie auto () [Corola-website/Science/337261_a_338590]
-
N. Lewis în 1916 pentru elementele din prima grupă și a doua principală, a fost pusă în evidență în 1920 de către Moers prin electroliza topiturii de hidrură de litiu (LiH), când a fost produsă o cantitate stoechiometrică de hidrogen la anod. Pentru hidrurile altor elemente, termenul este ambiguu, luând în considerare electronegativitatea hidrogenului. Excepție face BeH, care este un polimer. În hidrura de litiu și aluminiu, anionul AlH are centre de hidrură atașate puternic de aluminiu. Chiar dacă hidrogenul poate forma hidruri
Hidrogen () [Corola-website/Science/297141_a_298470]
-
prin reacția metalelor cu acizii în aparatul Kipp. Aluminiul poate produce H prin tratarea cu baze: Electroliza apei este o metodă simplă de a produce hidrogen. Un curent de joasă tensiune trece prin apă, iar oxigenul gazos se formează la anod, în timp ce hidrogenul gazos apare la catod. De obicei la producerea hidrogenului, catodul este confecționat din platină. Dacă se realizează și arderea, oxigenul este preferat pentru combustie, astfel ambii electrozi sunt confecționați din metale inerte. Eficiența maximă (electricitatea utilizată raportată la
Hidrogen () [Corola-website/Science/297141_a_298470]
-
nu este nevoie ca filamentul să fie și emitor de electroni liberi și că poate exista o placă numită "catod" care poate fi încălzită de acesta. Captarea lor va fi făcută de o altă placă, cu polaritate electrică pozitivă, numită "anod". Acest tip de lampă se numește "diodă". Ulterior au apărut și lămpi mai complexe, în funcție de cerințe: triode, pentode și altele. A urmat apoi inventarea "tuburilor electronice", sufletul electronicii; ele au dăinuit o "eternitate" de circa 50 de ani. Inventarea tuburilor
Electronică () [Corola-website/Science/299461_a_300790]
-
liber, dar nici cu microscopul”; savanții au crezut că au obținut un compus ne-stoichiometric cu formula (). De fapt, ei au produs, cel mai probabil, un amestec coloidal de metal și clorură de cesiu. Electroliza soluției apoasă de clorură cu anod lichid de mercur produce un amalgam ce se descompune rapid sub influența apei. Metalul pur a fost izolat, în cele din urmă, de către chimistul german Carl Setterberg în timp ce își pregătea lucrarea de doctorat cu Kekulé și Bunsen. În 1882, acesta
Cesiu () [Corola-website/Science/304474_a_305803]
-
la baza "electroforezei" proteinelor, datorită incărcării pozitive cationii migrează spre catod, fenomen numit "cataforeză", proteina fiind în acest caz electropozitivă. În mediu bazic proteinele se comportă ca acizii slabi, ele cedând protoni, se formează astfel anioni proteici, care migrează spre anod fenomenul fiind denumit "anaforeză", proteina avînd încărcare electronegativă. formula 3, anion al proteinei. Datorită caracterului amfoter proteinele pot neutraliza cantități mici de substanță acidă sau bazică, avind în acest fel rol de soluție tampon, prin acest lucru contribuind la menținerea echilibrului
Proteină () [Corola-website/Science/303840_a_305169]
-
aparat "prin compresie și răcire", cu care a putut să "lichefieze" aproape toate gazele cunoscute în acel timp. În 1833 enunță "legea electrolizei", lege ce stă la baza "electrochimiei. Tot el, Faraday, este cel ce introduce termenii de "ion, catod, anod, anion, cation, echivalent electrochimic". De asemeni studiind "proprietățile magnetice ale substanțelor",introduce termenii de "diamagnetism" și "paramagnetism". A elaborat "teoria electrizării prin influență" și "principiul ecranului electrostatic" (sau "cusca lui Faraday"), enunțând astfel "legea consevării sacinii electrice" (1843). Mai târziu
Michael Faraday () [Corola-website/Science/302976_a_304305]
-
decât inițial și dacă m1, m2, m3, m4 sunt masele finale ale acestora m1<m2<m3<m4. Ionii de Cu2+ sunt atrași de catod care le cedează electroni, sunt neutralizați și se depun pe acesta. Ionii de 2Cl cedează electroni anodului; atomii neutri de clor, sub formă de molecule de gaz se dizolvă parțial în apă; este caracteristic mirosul înțepător. Neutralizarea electrică a ionilor este însoțită de reacții chimice specifice care transformă calitativ suprafața electrozilor. Reacțiile chimice de la electrozi duc la
Efectele curentului electric () [Corola-website/Science/312275_a_313604]
-
cupru depusă pe catod, m~t. Comparând m1, m2, m3, m4, deducem că m~I. Electroliza este utilizată pentru obținerea metalelor pure (Cu, Ag, Al, Zn, Pt) în galvanoplastie, galvanostegie. Obținerea metalelor pure prin rafinare se realizează prin electroliza cu anod solubil unde metalul este transferat de pe anodul impur pe catodul realizat sub forma unei lame sau a unui fir foarte pur. Aluminiul pur se obține din praf de alumină (Al2O3), care se topește într-o cuvă cu pereți din grafit
Efectele curentului electric () [Corola-website/Science/312275_a_313604]
-
m1, m2, m3, m4, deducem că m~I. Electroliza este utilizată pentru obținerea metalelor pure (Cu, Ag, Al, Zn, Pt) în galvanoplastie, galvanostegie. Obținerea metalelor pure prin rafinare se realizează prin electroliza cu anod solubil unde metalul este transferat de pe anodul impur pe catodul realizat sub forma unei lame sau a unui fir foarte pur. Aluminiul pur se obține din praf de alumină (Al2O3), care se topește într-o cuvă cu pereți din grafit, acesta constituind catodul. Anodul este un electrod
Efectele curentului electric () [Corola-website/Science/312275_a_313604]
-
este transferat de pe anodul impur pe catodul realizat sub forma unei lame sau a unui fir foarte pur. Aluminiul pur se obține din praf de alumină (Al2O3), care se topește într-o cuvă cu pereți din grafit, acesta constituind catodul. Anodul este un electrod din grafit. În urma electrolizei ionii de Al3+ se depun pe pereții cuvei. Prin electroliză se obține și cuprul electrotehnic de mare puritate. Galvanoplastia constă în depunerea unor straturi metalice subțiri pe obiecte metalice în scop de protecție
Efectele curentului electric () [Corola-website/Science/312275_a_313604]
-
trei electrozi, aflați într-un balon vidat. Curentul din triodă poate fi controlat de un electrod de comandă: , astfel că trioda poate funcționa ca amplificator, oscilator, sau în comutație. Cei trei electrozi sunt catodul, încălzit de un filament, grila și anodul. A fost inventată în 1906 de Lee De Forest prin adăugarea grilei la o diodă. Inventarea triodei a inaugurat era electronicii și a permis dezvoltarea radiofoniei și a telefoniei la mare distanță. Triodele au fost folosite mult în aparatele electronice
Triodă () [Corola-website/Science/336446_a_337775]
-
prin microunde. Termenul de „triodă” provine din limba greacă: τρίοδος, "tríodos", format din "tri-" (trei) și "hodós" (cale), sensul original fiind locul unde se întâlnesc trei căi (ramuri) de curent. Primul tub electronic, dioda, avea doi electrozi, un filament și anodul. A fost inventată în 1904 de John Ambrose Fleming și a fost folosită ca în aparatele de radio. Primul tub cu trei electrozi a fost unul cu descărcare în vapori de mercur, brevetat la 4 martie 1906 de austriacul Robert
Triodă () [Corola-website/Science/336446_a_337775]
-
von Lieben. Independent, în 1906 inginerul american Lee De Forest a inventat tuburi cu trei electrozi, prin adăugarea unui electrod într-o diodă, tuburi numite Audion. Audion este considerată prima triodă. Tubul la care grila era plasată între filament și anod, și care va deveni prototipul triodei, a fost brevetat în 29 ianuarie 1907. La Audion vidul nu era perfect, el mai conținea gaz la presiune scăzută, considerat necesar de De Forest, însă care determina o funcționare neregulată și scurta durata
Triodă () [Corola-website/Science/336446_a_337775]
-
fi în etajele de mare putere ale emițătoarelor, la încălzirea prin microunde și la înregistrările sonore de înaltă fidelitate. Triodele au un catod încălzit electric de un filament. În urma încălzirii catodul emite electroni prin emisie termionică. Electronii sunt atrași de anod, aflat la un potențial pozitiv față de catod. Între catod și anod este plasată grila, formată dintr-o plasă prin care electrozii pot trece mai mult sau mai puțin, în funcție de potențialul ei. Ca urmare, grila joacă rolul de element de comandă
Triodă () [Corola-website/Science/336446_a_337775]
-
microunde și la înregistrările sonore de înaltă fidelitate. Triodele au un catod încălzit electric de un filament. În urma încălzirii catodul emite electroni prin emisie termionică. Electronii sunt atrași de anod, aflat la un potențial pozitiv față de catod. Între catod și anod este plasată grila, formată dintr-o plasă prin care electrozii pot trece mai mult sau mai puțin, în funcție de potențialul ei. Ca urmare, grila joacă rolul de element de comandă al fluxului de electroni prin tub. Electrozii sunt închiși ermetic într-
Triodă () [Corola-website/Science/336446_a_337775]
-
într-un soclu. Durata de viață a triodelor de mică putere este de circa 2000 de ore, iar a celor de mare putere de circa 10 000 de ore. Triodele de putere mică au o construcție concentrică, cu grila și anodul ca niște cilindri circulari sau ovali care înconjoară catodul. Catodul este un tub metalic aflat în centru. Prin interiorul lui trece filamentul, format dintr-o spirală de wolfram cu rezistență mare. Filamentul încălzește catodul „la roșu”, adică la 800-1000. Acest
Triodă () [Corola-website/Science/336446_a_337775]