376 matches
-
stabile ale primelor trei gaze rare. A putut fi pusă însă în evidență existența, în fază gazoasă, a unor ioni instabili HeH și ArH și a unor molecule (He) și (Ne). Calculele teoretice nu exclud posibilitatea unor compuși stabili ai argonului. Kriptonul are o reactivitate redusă; se cunosc numai puține combinații ale acestui element. În schimb xenonul se combină ușor cu fluorul. Fluorurile xenonului dau reacții variate, și din ele s-au obținut un număr relativ mare de combinații ale acestui
Gaz nobil () [Corola-website/Science/303056_a_304385]
-
aerului după Linde. Fracținea de aer care rămâe nelichefiată conține heliul și neonul, căci aceste două gaze au puncte de fierbere mai scăzute decât celelalte gaze din aer și, din această cauză, se lichefiază mai greu. Aerul lichid obținut conține argonul și gazele rare mai grele. Prin distilări fracționate repetate, se obține un concentrat în gaze rare. Din acesta, oxigenul și micile cantități de azot rămase se îndepărtează pe cale chimică, prin combinare cu magneziu, calciu metalic sau un amestec de oxid
Gaz nobil () [Corola-website/Science/303056_a_304385]
-
concentrat în gaze rare. Din acesta, oxigenul și micile cantități de azot rămase se îndepărtează pe cale chimică, prin combinare cu magneziu, calciu metalic sau un amestec de oxid de calciu, magneziu și sodiu metalic. Se obține astfel un amestec de argon, kripton și xenon, care pentru multe scopuri practice se utilizează ca atare. (ca materie primă pentru acest amestec se poate folosi și gazul rezidual de la fabricarea amoniacului). Pentru a izola kriptonul din acest argon brut, el este supus unor distilații
Gaz nobil () [Corola-website/Science/303056_a_304385]
-
Se obține astfel un amestec de argon, kripton și xenon, care pentru multe scopuri practice se utilizează ca atare. (ca materie primă pentru acest amestec se poate folosi și gazul rezidual de la fabricarea amoniacului). Pentru a izola kriptonul din acest argon brut, el este supus unor distilații fracționate repetate. Kriptonul se obține cel mai greu căci este fracțiunea mijlocie. Cu mare succes se utilizează, pentru separarea gazelor rare, proprietatea cărbunelui activ de a fixa pe suprafața sa foarte mare, de a
Gaz nobil () [Corola-website/Science/303056_a_304385]
-
cărbunele absoarbe cel mai ușor pe cel cu masa atomică cea mai mare, deci întâi xenonul, apoi kriptonul, etc. Prin încălzirea cărbunelui la temperatura camerei, gazul absorbit este apoi pus în libertate. Dacă se absoarbe complet amestecul celor trei gaze, argon, kripton, xenon, și se încălzește încetul cu încetul, se desoarbe întâi argonul, apoi kriptonul și la urmă xenonul. Cu ajutorul cărbunelui activ se poate separa și amestecul de neon și heliu izolat din fracțiunea necondensată a aerului lichid, în modul descris
Gaz nobil () [Corola-website/Science/303056_a_304385]
-
mare, deci întâi xenonul, apoi kriptonul, etc. Prin încălzirea cărbunelui la temperatura camerei, gazul absorbit este apoi pus în libertate. Dacă se absoarbe complet amestecul celor trei gaze, argon, kripton, xenon, și se încălzește încetul cu încetul, se desoarbe întâi argonul, apoi kriptonul și la urmă xenonul. Cu ajutorul cărbunelui activ se poate separa și amestecul de neon și heliu izolat din fracțiunea necondensată a aerului lichid, în modul descris mai sus; heliul, cel mai greu condensabil dintre toate gazele rare, nu
Gaz nobil () [Corola-website/Science/303056_a_304385]
-
față de care are avantajul de a nu fi inflamabil. Gazele rare se întrebuințează pentru realizarea unei atmosfere inerte în acele procese fizice și chimice în care azotul, folosit de obicei pentru acest scop, nu este destul de inert. Astfel heliul sau argonul se utilizează în metalurgia titanului. Becurile electrice cu atmosferă de gaz inert se umplu cu argon brut. Tuburi de descărcare de forme diferite umplute cu neon (portocaliu intens) și cu argon (albastru) se folosesc pe scară mare pentru firme luminoase
Gaz nobil () [Corola-website/Science/303056_a_304385]
-
atmosfere inerte în acele procese fizice și chimice în care azotul, folosit de obicei pentru acest scop, nu este destul de inert. Astfel heliul sau argonul se utilizează în metalurgia titanului. Becurile electrice cu atmosferă de gaz inert se umplu cu argon brut. Tuburi de descărcare de forme diferite umplute cu neon (portocaliu intens) și cu argon (albastru) se folosesc pe scară mare pentru firme luminoase. Heliul se mai folosește ca gaz purtător în cromatografia gaz-lichid, în tehnica temperaturilor foarte joase, sau
Gaz nobil () [Corola-website/Science/303056_a_304385]
-
acest scop, nu este destul de inert. Astfel heliul sau argonul se utilizează în metalurgia titanului. Becurile electrice cu atmosferă de gaz inert se umplu cu argon brut. Tuburi de descărcare de forme diferite umplute cu neon (portocaliu intens) și cu argon (albastru) se folosesc pe scară mare pentru firme luminoase. Heliul se mai folosește ca gaz purtător în cromatografia gaz-lichid, în tehnica temperaturilor foarte joase, sau (în amestec cu 15-21% oxigen) ca gaz de respirat în scufundările submarine autonome la mari
Gaz nobil () [Corola-website/Science/303056_a_304385]
-
helios")." La data de 26 martie 1895, chimistul britanic Șir William Ramsay a izolat heliul prin tratarea unui mineral numit cleveit (o varietate a uraninitului ce conține cel putin 10% din pământurile rare) cu acizi minerali. Ramsay dorea să obțină argonul, însă după ce separase oxigenul și azotul din gazul eliberat de acidul sulfuric, a observat o fâșie intensă de culoare galbenă ce se potrivea cu fâșia de D observată în spectrul solar. Aceste mostre au fost identificate ca fiind heliu de către
Heliu () [Corola-website/Science/302350_a_303679]
-
HgHe, care este stabilizata prin forțe de polarizare. Prin electroscopie s-au putut studia heliurile PbHe, PtHe și PdHe. Teoretic mai pot exista și alți compuși ai heliului, cum ar fi fluorhidrura de heliu (HHeF) ce reprezinta analogul fluorhidrurii de argon (HArF), descoperită în 2000. În urmă calculelor s-a constatat că mai pot exista doi compuși ce conțin legături heliu-oxigen ce ar putea fi stabili. Aceste două noi specii, CsFHeO și N(CH)FHeO, sunt derivați din anionul foarte stabil
Heliu () [Corola-website/Science/302350_a_303679]
-
aceea a luminii”. Aici însă nu este vorba de o verificare sau repetare a experimentului OPERA, ci de experimentul ICARUS, care a măsurat neutrini pe același traseu CERN - Gran Sasso, dar a folosit un nou tip de detector numit "Liquid Argon Time Projection Chamber". Experimentul ICARUS arată că neutrinii nu pot depăși viteza luminii.
Neutrin () [Corola-website/Science/302671_a_304000]
-
descompune în Ca (88,8% din dezintegrări) prin dezintegrare beta; K are un timp de înjumătățire de 1.250×10 ani. Dezintegrarea izotopului K în Ar activează o metodă folosită în datarea rocilor. Metoda convențională de datare prin potasiu și argon presupune că rocile nu conțineau argon la momentul formării și că argonul radiogenic a fost reținut cantitativ (de exemplu Ar). Mineralele sunt datate prin măsurarea concentrației de potasiu și de Ar radiogenic acumulat. Mineralele cele mai potrivite pentru datare includ
Potasiu () [Corola-website/Science/302745_a_304074]
-
dezintegrări) prin dezintegrare beta; K are un timp de înjumătățire de 1.250×10 ani. Dezintegrarea izotopului K în Ar activează o metodă folosită în datarea rocilor. Metoda convențională de datare prin potasiu și argon presupune că rocile nu conțineau argon la momentul formării și că argonul radiogenic a fost reținut cantitativ (de exemplu Ar). Mineralele sunt datate prin măsurarea concentrației de potasiu și de Ar radiogenic acumulat. Mineralele cele mai potrivite pentru datare includ biotitul, muscovitul hornblenda plutonică/metamorfică de
Potasiu () [Corola-website/Science/302745_a_304074]
-
un timp de înjumătățire de 1.250×10 ani. Dezintegrarea izotopului K în Ar activează o metodă folosită în datarea rocilor. Metoda convențională de datare prin potasiu și argon presupune că rocile nu conțineau argon la momentul formării și că argonul radiogenic a fost reținut cantitativ (de exemplu Ar). Mineralele sunt datate prin măsurarea concentrației de potasiu și de Ar radiogenic acumulat. Mineralele cele mai potrivite pentru datare includ biotitul, muscovitul hornblenda plutonică/metamorfică de grad înalt și feldspat vulcanic; mostre
Potasiu () [Corola-website/Science/302745_a_304074]
-
ridicate, este clasificat ca fiind un material periculos și nu poate fi transportat, ca și sodiul, decât în hidrocarburi saturate uscate, ca de exemplu în uleiuri minerale. Mai poate fi păstrat și în atmosferele de gaze inerte, ca cea de argon, sau în fiole din sticlă de borsilicat sigilate cu vid. Când este păstrat în cantități mai mari de 100 grame, cesiul este sigilat în containere din oțel inoxidabil. Caracteristicile chimice ale cesiului sunt similare cu cele ale metalelor alcaline, dar
Cesiu () [Corola-website/Science/304474_a_305803]
-
de 23 martie 1962, acesta a amestecat cele două gaze și a obținut primul compus al unui gaz nobil cunoscut vreodată, "hexafluoroplatinatul de xenon". Începând de atunci, o multitudine de compuși ai xenonului au fost descoperiți, împreună cu câțiva compuși de argon, krypton și radon, incluzând fluorohidrura de argon (HArF), difluorura de krypton (KrF) și fluorura de radon (RnF). În 1971, mai mult de 80 de compuși ai xenonului erau deja descoperiți. Xenonul are număr atomic egal cu 54, asta însemnând că
Xenon () [Corola-website/Science/304622_a_305951]
-
cele două gaze și a obținut primul compus al unui gaz nobil cunoscut vreodată, "hexafluoroplatinatul de xenon". Începând de atunci, o multitudine de compuși ai xenonului au fost descoperiți, împreună cu câțiva compuși de argon, krypton și radon, incluzând fluorohidrura de argon (HArF), difluorura de krypton (KrF) și fluorura de radon (RnF). În 1971, mai mult de 80 de compuși ai xenonului erau deja descoperiți. Xenonul are număr atomic egal cu 54, asta însemnând că conține 54 de protoni. La temperatură și
Xenon () [Corola-website/Science/304622_a_305951]
-
siliciu și tetraclorură de carbon (formula 53). Cu toate acestea, în lumea științifică există îndoieli dacă formula 52 este un compus real sau este doar un complex van der Waals format din molecula de formula 25 legat slab de atomul de formula 4. Asemena argonului și kriptonului, xenonul poate forma cu apa, la temperaturi joase și presiuni înalte, produse de adiție, de exemplu formula 57. Acești hidrați cristalini se descompun imediat la încălzire sau la micșorarea presiunii. Studii structurale, au arătat că în hidrați, atomii de
Xenon () [Corola-website/Science/304622_a_305951]
-
formula 60). Primii doi oxizi sunt niște explozibili foarte puternici și agenți oxidanți la fel de puternici, iar ultimul, dioxidul de xenon, reportat doar în 2011, are numărul de coordinare egal cu patru. Cationi de formula 61 au fost găsiți în linia spectroscopică a argonului solid. formula 68 Capacitatea gazelor nobile de a forma combinații chimice cu alți atomi este însă limitată, la ora actuală se cunosc compuși ai Kr, Xe și Rn și numai legăturile cu fluor și oxigen sunt stabile. Recent, a început să
Xenon () [Corola-website/Science/304622_a_305951]
-
altitudine de 32 km, stabilizându-se la o valoare de 4,9% între 8 km și suprafața sa. Există urme și ale altor hidrocarboni, cum ar fi urme de etan, diacetilenă, metilacetilenă, acetilenă și propan, dar și alte gaze ca argonul, cianoacetilena, acidul cianhidric, dioxidul de carbon, cianogen și heliu. Culoarea portocalie, așa cum este apare din spațiul cosmic, poate fi datorată unor alte complexe chimice în mici cantități, posibil tolini, precipitate organice ca tarul. Se crede că hidrocarbonii apar în atmosfera
Titan (satelit) () [Corola-website/Science/304016_a_305345]
-
suficient pentru „sinteza unor molecule simple precursoare originii vieții.” Oamenii de știință au speculat faptul că aceste condiții de pe Titan se aseamănă cu cele inițiale de pe Pământ, deși la o temperatură mult mai mică. Detectarea în 2004 a izotopului de argon 40 în atmosferă a indicat faptul că vulcanii au generat efluenți de „lavă” compusă din apă și amoniac. Hărțile globale de distribuție a lacurilor la suprafață au relevat faptul că nu există suficient metan la suprafață care să explice prezența
Titan (satelit) () [Corola-website/Science/304016_a_305345]
-
deșeurilor radioactive Servicii de tratare a deșeurilor radioactive SUBSECȚIUNEA DG PREPARATE CHIMICE, PRODUSE CHIMICE ȘI FIBRE ARTIFICIALE DIVIZIUNEA 24 PREPARATE CHIMICE, PRODUSE CHIMICE ȘI FIBRE ARTIFICIALE Grupa 24.1 Preparate chimice primare Clasa 24.11 Gaze industriale Gaze industriale Hidrogen, argon, gaze rare, nitrogen și oxigen Dioxid de carbon și alți compuși anorganici de oxigen ai neferoaselor Aer lichefiar și comprimat 336 33610 33620 33630 33690 337a 33710 884p 88450 342a 34210.1 34210.2 34250.1 2844.10 2844.20
by Guvernul Romaniei () [Corola-other/Law/87510_a_88297]
-
baie cu temperatură constantă având o abatere de 0,5oC față de temperatura aleasă. Se evită prin mijloace adecvate interferența fotolitică. Pentru substanțele care se oxidează ușor este necesar să se elimine oxigenul dizolvat (de exemplu, prin barbotare cu azot sau argon timp de 5 minute înainte de pregătirea soluției). 1.6.5. Mod de operare 1.6.5.1. Test preliminar Pentru toate substanțele se efectuează un test preliminar la 50oC 0,5oC la trei valori ale pH-ului: 4,0, 7
by Guvernul Romaniei () [Corola-other/Law/87087_a_87874]
-
poziția a 18-a în tabelul periodic al elementelor. Se găsește sub formă gazoasă, reprezentând 0,94% din atmosfera terestră. Pe Pământ este cel mai des întâlnit și folosit gaz nobil. Deși este foarte abundent în atmosfera terestră (aproape 1%), argonul nu a fost descoperit până în anul 1894, când fizicianul John Strutt, al treilea Lord Rayleigh și chimistul Sir William Ramsay au raportat existența lui la întâlnirea anuală a Asociației Britanice pentru Avansare a Științei la Oxford. Cu toate acestea, nu
Argon () [Corola-website/Science/304440_a_305769]