1,038 matches
-
element este de zece, pentru elementul staniu. Elementele 43, 61, și toate elementele cu numere de la 83 în sus nu au izotopi stabili. Stabilitatea izotopilor este afectată de raportul dintre protoni și neutroni, și de prezența unor „numere magice” de neutroni sau protoni, care reprezintă învelișuri cuantice închise și pline. Aceste învelișuri cuantice corespund unui set de niveluri de energie în cadrul al nucleului; învelișuri pline, cum ar fi învelișul plin de 50 de protoni pentru staniu, conferă stabilitate neobișnuită nuclidului. Din
Atom () [Corola-website/Science/297795_a_299124]
-
al nucleului; învelișuri pline, cum ar fi învelișul plin de 50 de protoni pentru staniu, conferă stabilitate neobișnuită nuclidului. Din cele 254 de nuclee stabile cunoscute, doar patru au atât un număr impar de protoni "și" un număr impar de neutroni: hidrogen-2 (deuteriu), , bor-10 și . De asemenea, doar patru nuclizi naturali, radioactivi, par-par au un timp de înjumătățire de peste un miliard de ani: , , și . Majoritatea nucleelor impar-impar sunt foarte instabile în raport cu , deoarece produsele de descompunere sunt par-par, și, prin urmare, mai
Atom () [Corola-website/Science/297795_a_299124]
-
un timp de înjumătățire de peste un miliard de ani: , , și . Majoritatea nucleelor impar-impar sunt foarte instabile în raport cu , deoarece produsele de descompunere sunt par-par, și, prin urmare, mai puternic legate, din cauza . Marea majoritate a masei unui atom provine de la protoni și neutroni. Numărul total al acestor particule (numite „nucleoni”) într-un anumit atom se numește numărul de masă. Este un număr întreg pozitiv și adimensional (în loc de a avea dimensiunea de masă), pentru că exprimă un număr. Un exemplu de utilizare a unui numărul
Atom () [Corola-website/Science/297795_a_299124]
-
numește numărul de masă. Este un număr întreg pozitiv și adimensional (în loc de a avea dimensiunea de masă), pentru că exprimă un număr. Un exemplu de utilizare a unui numărul de masă este „carbon-12,” care are 12 nucleoni (șase protoni și șase neutroni). Deoarece chiar și cei mai masivi atomi sunt mult prea ușori pentru a lucra cu ei în mod direct, chimiștii folosesc în schimb unitatae mol. Un mol de atomi de orice element are întotdeauna același număr de atomi (circa ). Acest
Atom () [Corola-website/Science/297795_a_299124]
-
raza unui nucleu este mare în comparație cu raza de acțiune a forței tari, care acționează numai pe distanțe de ordinul a 1 fm. Cele mai frecvente forme de dezintegrare radioactivă sunt: Alte tipuri mai rare de dezintegrare radioactivă sunt ejecția de neutroni sau protoni sau de grupuri de nucleoni din nucleu, sau mai multe particule beta. O emisie gamma analogă care permite ca nucleele excitate să piardă energie într-un mod diferit, este — un proces care produce electroni cu viteză mare care
Atom () [Corola-website/Science/297795_a_299124]
-
produce electroni cu viteză mare care nu sunt radiații beta, urmațide producerea de fotoni cu energie înaltă, care nu sunt radiații gamma. Câteva nuclee mari pot exploda în două sau mai multe fragmente încărcate electric de diferite mase, plus câțiva neutroni, într-o degradare numită fisiune nucleară spontană. Fiecare izotop radioactiv are o perioadă de timp ce caracterizează descompunerea— timpul de înjumătățire—care este determinat de cantitatea de timp necesară pentru ca o jumătate dintr-un eșantion să se dezintegreze. Acesta este
Atom () [Corola-website/Science/297795_a_299124]
-
se rotește în jurul centrului de masă, deși, strict vorbind, aceste particule sunt considerate a fi punctiforme și nu mai poate fi vorba despre o rotație a lor. Spinul este măsurat în unități de constantă Planck redusă (ħ), electronii, protonii și neutronii toate având spin ½ ħ, sau „spin-½”. Într-un atom, electronii în mișcare în jurul nucleului posedă un moment cinetic orbital în plus față de spin, în timp ce nucleul în sine posedă moment cinetic datorită spinului nuclear. Câmpul magnetic produs de un atom— momentul
Atom () [Corola-website/Science/297795_a_299124]
-
macroscopică. Materialele paramagnetice au atomi cu momentele magnetice întreptate în direcții aleatoare atunci când nu este prezent niciun câmp magnetic, care se aliniază în prezența unui câmp. Nucleul unui atom nu va avea niciun spin atunci când are atât număr par de neutroni cât și de protoni, dar în alte cazuri cu numere impare, nucleul poate avea spin. În mod normal, nucleele cu spin sunt aliniate în direcții aleatoare, din cauza . Cu toate acestea, pentru anumite elemente (cum ar fi xenon-129) este posibil să
Atom () [Corola-website/Science/297795_a_299124]
-
prin . Acest lucru se întâmplă atunci când un proton cu energie mare lovește un nucleu atomic, provocând extragerea unui număr mare de nucleoni. Elementele mai grele decât fierul s-au produs în supernove prin și în prin , care implică capturarea de neutroni de către nucleele atomice. Elemente cum ar fi plumbul s-au format în mare parte prin dezintegrarea radioactivă a elementelor mai grele. Cei mai mulți dintre atomii care alcătuiesc Pământul și pe locuitorii săi au fost prezenți, în forma lor actuală, în nebuloasa
Atom () [Corola-website/Science/297795_a_299124]
-
fost propusă o „” pentru unele elemente cu numere atomice mai mari de 103. Aceste pot avea un nucleu relativ stabil în raport cu dezintegrarea radioactivă. Cel mai probabil candidat pentru un atom supergreu stabil, unbihexium, are 126 de protoni și 184 de neutroni. Fiecare particulă de materie are o particulă corespondentă de antimaterie cu sarcină electrică opusă. Astfel, pozitronii sunt antielectroni, încărcați pozitiv, iar antiprotonii sunt echivalentul unor protoni cu sarcină negativă. Atunci când materia și antimateria se întâlnesc, ele se anihilează reciproc. Din
Atom () [Corola-website/Science/297795_a_299124]
-
urmare, nu a fost descoperită în natură antimaterie. Cu toate acestea, în 1996 echivalentul din antimaterie al atomului de hidrogen (antihidrogen) a fost sintetizat la laboratorul CERN din Geneva. Alți atomi exotici au fost create prin înlocuirea unuia din protoni, neutroni sau electroni cu alte particule cu aceeași sarcină electrică. De exemplu, un electron poate fi înlocuit cu un miuon mult mai masiv, formând un . Aceste tipuri de atomi pot fi folosite pentru a testa previziuni fundamentale ale fizicii.
Atom () [Corola-website/Science/297795_a_299124]
-
originala Jocul poate fii descărcat gratuit de pe site-ul oficial Al doilea joc din serie,"Chicken Invaders: The Next Wave",a fost lansat în 2002. Găinile se întorc și atacă Sistemul Solar.Jocul are încă două arme - Laser Cannon și Neutron Gun,arma precedentă fiind Ion Blaster care era verde,acum este roșie.Armele sunt sub formă de cadouri care au aceeași culoare ca și arma.Un nou bonus este introdus care are trei culori - roșu,verde și galben care îmbunătățește
Chicken Invaders () [Corola-website/Science/318724_a_320053]
-
minereurile de uraniu, cantitățile de actiniu din minereu fiind de ordinul miligramelor la o tonă de minereu brut. Răspândirea actiniului în scoarța terestră este de 5 · 10 %. Datorită intensității radioactivității sale, are puține domenii de utilizare, precum radioimunoterapia sau folosirea neutronilor emiși ca sursă energetică. În tehnologia chimică sau metalurgia clasică nu se cunosc aplicații industriale ale actiniului. După extracția poloniului și al radiului, în reziduurile de pechblendă se observa un material activ, care putea fi îndepărtat cu ajutorul pământurilor rare. Colaboratorul
Actiniu () [Corola-website/Science/303164_a_304493]
-
anul 2000 Termenul de "actiniu" provine din cuvântul grecesc "ακτίς", "ακτίνoς", însemnând "rază" sau "fascicul". Structura atomului de Actiniu este determinat de numărul nucleonilor din nucleul atomic, astfel pentru izotopul său natural, Ac, el are 89 de protoni și 138 neutroni. Numărul neutronilor poate varia de la 117 până la 147 în funcție de izotop. Raza atomică medie este de 1,88Å, volumul molar al actiniului chimic pur în condiții fizice normale este de 22,54 cm/mol. Învelișul electronic este format din 89 electroni
Actiniu () [Corola-website/Science/303164_a_304493]
-
Termenul de "actiniu" provine din cuvântul grecesc "ακτίς", "ακτίνoς", însemnând "rază" sau "fascicul". Structura atomului de Actiniu este determinat de numărul nucleonilor din nucleul atomic, astfel pentru izotopul său natural, Ac, el are 89 de protoni și 138 neutroni. Numărul neutronilor poate varia de la 117 până la 147 în funcție de izotop. Raza atomică medie este de 1,88Å, volumul molar al actiniului chimic pur în condiții fizice normale este de 22,54 cm/mol. Învelișul electronic este format din 89 electroni care ocupă
Actiniu () [Corola-website/Science/303164_a_304493]
-
7s aranjați în structura caracteristică actiniului sunt responsabili de majoritatea proprietăților chimice ale speciei atomice. Actiniul este găsit în cantități mici în minereurile de uraniu, însă de obicei este fabricat, în cantități de ordinul miligramelor, prin iradierea izotopului Ra cu neutroni moderați (termalizați sau încetiniți) într-un reactor nuclear, reacția nucleară având loc după schema: Actiniul metalic a fost preparat prin reducerea fluorurii de actiniu cu vapori de litiu la temperaturi de 1100-1300 °C. Actiniul în natură este găsit doar ca
Actiniu () [Corola-website/Science/303164_a_304493]
-
Trifluorura de actiniu este o substanță stabilă la încălzire, iar procesul de pirohidroliză are loc doar la temperaturi de 1000 °C, în prezența amoniacului și a vaporilor de apă, având loc trecerea în AcOF. Totodată trifluorura este o sursă de neutroni pe baza reacției F()Na, la o cantitate de 1 Ci actiniu corespunzând 1,21*10n/s. AcCl se prepară din Ac(OH) cu CCl la 950 °C, când se obține un produs cu simetrie hexagonală similar cu a UCl
Actiniu () [Corola-website/Science/303164_a_304493]
-
de mase atomice de la 206 unități atomice de masă (Ac) la 236 u.a.m. Izotopii actiniului sunt prezentați în tabelul de mai jos: Este de aproximativ 150 de ori mai radioactiv ca radiul, făcându-l valoros ca sursă energetică datorită neutronilor. În combinație cu beriliul, este utilizat în generarea neutronilor pentru activarea analizelor minereurilor sau aliajelor. Altfel, acesta nu are nici o aplicație industrială semnificativă. Ac este utilizat în medicină pentru a produce Bi într-un generator reutilizabil sau poate fi folosit
Actiniu () [Corola-website/Science/303164_a_304493]
-
Ac) la 236 u.a.m. Izotopii actiniului sunt prezentați în tabelul de mai jos: Este de aproximativ 150 de ori mai radioactiv ca radiul, făcându-l valoros ca sursă energetică datorită neutronilor. În combinație cu beriliul, este utilizat în generarea neutronilor pentru activarea analizelor minereurilor sau aliajelor. Altfel, acesta nu are nici o aplicație industrială semnificativă. Ac este utilizat în medicină pentru a produce Bi într-un generator reutilizabil sau poate fi folosit individual ca un agent pentru radio-imonoterapia pentru Targeted Alpha
Actiniu () [Corola-website/Science/303164_a_304493]
-
formă de cub cu latura de aproximativ 7 metri, traversat de 1369 de canale de combustibil. Pe latura estică și vestică există câte 30 de orificii care corespund câte unui canal în grafit. Aceste orificii erau utilizate pentru a permite neutronilor să iasă afară din reactor, putând fii utilizați în experimente(exemplu: activare cu neutroni). Controlul reactorului era realizat cu ajutorul tijelor de control din oțel-bor introduse în miezul reactorului prin colțurile sudice.În total existau 16 tije de control, câte 8
BGRR () [Corola-website/Science/305630_a_306959]
-
de combustibil. Pe latura estică și vestică există câte 30 de orificii care corespund câte unui canal în grafit. Aceste orificii erau utilizate pentru a permite neutronilor să iasă afară din reactor, putând fii utilizați în experimente(exemplu: activare cu neutroni). Controlul reactorului era realizat cu ajutorul tijelor de control din oțel-bor introduse în miezul reactorului prin colțurile sudice.În total existau 16 tije de control, câte 8 dispuse în rânduri de câte două( în total 4 rânduri) în fiecare colț sudic
BGRR () [Corola-website/Science/305630_a_306959]
-
1871 - 1937) care a efectuat bombardarea nucleelor atomice de azot cu helioni, obținând protoni și nuclee de izotopi ai oxigenului. Compatriotul său, James Chadwick (1891 - 1974), în 1932, prin bombardarea nucleelor de beriliu cu helioni, obține nuclee de carbon și neutroni. În 1938, chimistul german Otto Hahn (1879 - 1968) reușește fisiunea nucleară a uraniului și a toriului.
Istoria chimiei () [Corola-website/Science/308466_a_309795]
-
măști chirurgicale (pe post de Dr. Emile Koning, conform informațiilor de pe ecran), punându-și mănușile, în timp ce Michael Palin povestește o scenetă care aduce în discuție o persoană după alta, dar nu începe de fapt niciodată. La începutul episodului 44, "Mr. Neutron", Adams încarcă o rachetă într-o căruță condusă de Terry Jones, care adună deșeuri de metal ("Orice fier vechi..."). Cele două episoade au fost lansate în noiembrie 1974. Adams și Chapman au colaborat și la alte proiecte în afara celor de la
Douglas Adams () [Corola-website/Science/299732_a_301061]
-
De asemenea, numeroși radioizotopi sintetici ai unor elemente răspândite în natură au fost produși în laboratoare. Fiecare element chimic are asociat un unic număr atomic (Z), care reprezintă numărul de protoni din nucleu. Majoritatea elementelor au un număr diferit de neutroni în atomi diferiți, aceste variante fiind numite izotopi. De exemplu, carbonul are trei izotopi naturali: toți atomii de carbon au șase protoni și majoritatea au șase neutroni, dar 1% au șapte neutroni și un procent foarte mic au opt neutroni
Tabelul periodic al elementelor () [Corola-website/Science/299184_a_300513]
-
reprezintă numărul de protoni din nucleu. Majoritatea elementelor au un număr diferit de neutroni în atomi diferiți, aceste variante fiind numite izotopi. De exemplu, carbonul are trei izotopi naturali: toți atomii de carbon au șase protoni și majoritatea au șase neutroni, dar 1% au șapte neutroni și un procent foarte mic au opt neutroni. Izotopii nu sunt separați în tabelul periodic: ei sunt mereu grupați, reprezentați împreună, sub același nume. Elementele care nu au niciun izotop stabil, au trecute în tabel
Tabelul periodic al elementelor () [Corola-website/Science/299184_a_300513]