486 matches
-
mare parte din învelișul de hidrogen din cauza atracției unei stele companion. Pe măsură ce materia expulzată de o supernovă de tip IIb se extinde, stratul de hidrogen devine rapid foarte subțire și lasă să se vadă straturile interioare. Magnitudinea absolută maximă a supernovelor de tip II nu este constantă, ele fiind mai slabe decât cele de tipul Ia. De exemplu, SN 1987A, cu luminozitate joasă, a avut o magnitudine absolută vizuală maximă de -15,5 (magnitudine aparentă +3 pentru o distanță de 51
Supernovă () [Corola-website/Science/304000_a_305329]
-
1987A, cu luminozitate joasă, a avut o magnitudine absolută vizuală maximă de -15,5 (magnitudine aparentă +3 pentru o distanță de 51 kpc), prin comparație cu -19,3 cât este pentru cele de tipul Ia. O problemă demult nerezolvată în ce privește supernovele o constă necesitatea unei explicații pentru viteza mare de îndepărtare de centru a obiectului compact rămas după explozie. (s-a observat că stelele neutronice, ca pulsari, au viteze mari; probabil că și găurile negre, dar ele sunt mult mai greu
Supernovă () [Corola-website/Science/304000_a_305329]
-
urmează. O altă explicație posibilă o constituie acreția de gaz înspre steaua neutronică centrală ce poate crea un disc ce generează jeturi direcționate, propulsând materie la viteze mari, și generând șocuri. Aceste jeturi ar putea juca un rol crucial în supernova rezultată. Asimetrii în fazele incipiente ale exploziilor au fost confirmate și în supernove de tip Ia prin observații. Acest rezultat poate să însemne că luminozitatea inițială a acestui tip de supernove ar putea să depindă de unghiul de observație. Explozia
Supernovă () [Corola-website/Science/304000_a_305329]
-
centrală ce poate crea un disc ce generează jeturi direcționate, propulsând materie la viteze mari, și generând șocuri. Aceste jeturi ar putea juca un rol crucial în supernova rezultată. Asimetrii în fazele incipiente ale exploziilor au fost confirmate și în supernove de tip Ia prin observații. Acest rezultat poate să însemne că luminozitatea inițială a acestui tip de supernove ar putea să depindă de unghiul de observație. Explozia devine, însă, mai simetrică cu trecerea timpului. Primele asimetrii sunt detectabile prin măsurarea
Supernovă () [Corola-website/Science/304000_a_305329]
-
Aceste jeturi ar putea juca un rol crucial în supernova rezultată. Asimetrii în fazele incipiente ale exploziilor au fost confirmate și în supernove de tip Ia prin observații. Acest rezultat poate să însemne că luminozitatea inițială a acestui tip de supernove ar putea să depindă de unghiul de observație. Explozia devine, însă, mai simetrică cu trecerea timpului. Primele asimetrii sunt detectabile prin măsurarea polarizării luminii emise. Întrucât au un model funcțional similar, supernovele de tipurile Ib, Ic și diferite supernove de
Supernovă () [Corola-website/Science/304000_a_305329]
-
însemne că luminozitatea inițială a acestui tip de supernove ar putea să depindă de unghiul de observație. Explozia devine, însă, mai simetrică cu trecerea timpului. Primele asimetrii sunt detectabile prin măsurarea polarizării luminii emise. Întrucât au un model funcțional similar, supernovele de tipurile Ib, Ic și diferite supernove de tipul II sunt denumite împreună supernove cu colaps al miezului. O diferență fundamentală între supernovele de tip Ia și cele cu colaps al miezului îl constituie sursa de energie pentru radiația emisă
Supernovă () [Corola-website/Science/304000_a_305329]
-
de supernove ar putea să depindă de unghiul de observație. Explozia devine, însă, mai simetrică cu trecerea timpului. Primele asimetrii sunt detectabile prin măsurarea polarizării luminii emise. Întrucât au un model funcțional similar, supernovele de tipurile Ib, Ic și diferite supernove de tipul II sunt denumite împreună supernove cu colaps al miezului. O diferență fundamentală între supernovele de tip Ia și cele cu colaps al miezului îl constituie sursa de energie pentru radiația emisă în apropierea maximului curbei de lumină. Stelele
Supernovă () [Corola-website/Science/304000_a_305329]
-
unghiul de observație. Explozia devine, însă, mai simetrică cu trecerea timpului. Primele asimetrii sunt detectabile prin măsurarea polarizării luminii emise. Întrucât au un model funcțional similar, supernovele de tipurile Ib, Ic și diferite supernove de tipul II sunt denumite împreună supernove cu colaps al miezului. O diferență fundamentală între supernovele de tip Ia și cele cu colaps al miezului îl constituie sursa de energie pentru radiația emisă în apropierea maximului curbei de lumină. Stelele ce produc supernove cu colaps al miezului
Supernovă () [Corola-website/Science/304000_a_305329]
-
trecerea timpului. Primele asimetrii sunt detectabile prin măsurarea polarizării luminii emise. Întrucât au un model funcțional similar, supernovele de tipurile Ib, Ic și diferite supernove de tipul II sunt denumite împreună supernove cu colaps al miezului. O diferență fundamentală între supernovele de tip Ia și cele cu colaps al miezului îl constituie sursa de energie pentru radiația emisă în apropierea maximului curbei de lumină. Stelele ce produc supernove cu colaps al miezului sunt stele cu straturi exterioare extinse și care pot
Supernovă () [Corola-website/Science/304000_a_305329]
-
II sunt denumite împreună supernove cu colaps al miezului. O diferență fundamentală între supernovele de tip Ia și cele cu colaps al miezului îl constituie sursa de energie pentru radiația emisă în apropierea maximului curbei de lumină. Stelele ce produc supernove cu colaps al miezului sunt stele cu straturi exterioare extinse și care pot atinge un grad de transparență cu o expansiune relativ redusă. Mare parte din energia care alimentează emisia la maximul de luminozitate provine din unda de șoc ce
Supernovă () [Corola-website/Science/304000_a_305329]
-
exterioare extinse și care pot atinge un grad de transparență cu o expansiune relativ redusă. Mare parte din energia care alimentează emisia la maximul de luminozitate provine din unda de șoc ce încălzește și împinge straturile exterioare. Stelele ce generează supernove de tipul Ia, pe de altă parte, sunt obiecte compacte, mult mai mici (dar mai masive) decât Soarele, care trebuie să se expandeze (astfel răcindu-se) enorm înainte de a deveni transparente. Căldura din explozie se disipă în expansiune și nu
Supernovă () [Corola-website/Science/304000_a_305329]
-
mult mai mici (dar mai masive) decât Soarele, care trebuie să se expandeze (astfel răcindu-se) enorm înainte de a deveni transparente. Căldura din explozie se disipă în expansiune și nu mai este disponibilă pentru generarea de lumină. Radiația emisă de supernovele de tip Ia se poate, astfel, atribui în totalitate dezintegrării radionuclidelor produse în explozie; în principal nichel-56 (cu un timp de înjumătățire de 6,1 zile) și produsul său cobalt-56 (cu un timp de înjumătățire de 77 zile). Razele gamma
Supernovă () [Corola-website/Science/304000_a_305329]
-
de 6,1 zile) și produsul său cobalt-56 (cu un timp de înjumătățire de 77 zile). Razele gamma emise în timpul acestei dezintegrări nucleare sunt absorbite de materialul aruncat, care astfel se încălzește și devine incandescent. Pe măsură ce materialul împrăștiat de o supernovă cu colaps al miezului se îndepărtează și se răcește, dezintegrarea nucleară ajunge în cele din urmă să devină principala sursă de energie a emisiei de lumină și în acest caz. O supernovă puternică de tipul Ia poate arunca 0,5-1
Supernovă () [Corola-website/Science/304000_a_305329]
-
și devine incandescent. Pe măsură ce materialul împrăștiat de o supernovă cu colaps al miezului se îndepărtează și se răcește, dezintegrarea nucleară ajunge în cele din urmă să devină principala sursă de energie a emisiei de lumină și în acest caz. O supernovă puternică de tipul Ia poate arunca 0,5-1,0 mase solare de nichel-56, iar o supernovă cu colaps al miezului probabil aruncă aproape 0,1 mase solare de nichel-56. Supernovele sunt o sursă-cheie de elemente mai grele decât oxigenul. Aceste
Supernovă () [Corola-website/Science/304000_a_305329]
-
se răcește, dezintegrarea nucleară ajunge în cele din urmă să devină principala sursă de energie a emisiei de lumină și în acest caz. O supernovă puternică de tipul Ia poate arunca 0,5-1,0 mase solare de nichel-56, iar o supernovă cu colaps al miezului probabil aruncă aproape 0,1 mase solare de nichel-56. Supernovele sunt o sursă-cheie de elemente mai grele decât oxigenul. Aceste elemente sunt produse prin fuziune nucleară (pentru fier-56 și elemente mai ușoare), și prin nucleosinteză în timpul
Supernovă () [Corola-website/Science/304000_a_305329]
-
energie a emisiei de lumină și în acest caz. O supernovă puternică de tipul Ia poate arunca 0,5-1,0 mase solare de nichel-56, iar o supernovă cu colaps al miezului probabil aruncă aproape 0,1 mase solare de nichel-56. Supernovele sunt o sursă-cheie de elemente mai grele decât oxigenul. Aceste elemente sunt produse prin fuziune nucleară (pentru fier-56 și elemente mai ușoare), și prin nucleosinteză în timpul exploziei pentru elementele mai grele decât fierul. Supernovele sunt cel mai probabil candidat pentru
Supernovă () [Corola-website/Science/304000_a_305329]
-
0,1 mase solare de nichel-56. Supernovele sunt o sursă-cheie de elemente mai grele decât oxigenul. Aceste elemente sunt produse prin fuziune nucleară (pentru fier-56 și elemente mai ușoare), și prin nucleosinteză în timpul exploziei pentru elementele mai grele decât fierul. Supernovele sunt cel mai probabil candidat pentru r-proces, o formă rapidă de nucleosinteză ce are loc în condiții de temperatură ridicată și de mare densitate de neutroni. Reacțiile produc nuclei foarte instabili, bogați în neutroni. Aceste forme sunt instabile și suferă
Supernovă () [Corola-website/Science/304000_a_305329]
-
de temperatură ridicată și de mare densitate de neutroni. Reacțiile produc nuclei foarte instabili, bogați în neutroni. Aceste forme sunt instabile și suferă dezintegrare beta foarte rapid înspre forme mai stabile. Reacția r-proces, care se presupune că are loc în supernovele de tipul II, produce aproximativ jumătate din toate celelalte elemente existente în univers dincolo de fier, inclusiv plutoniu, uraniu și californiu. Singurul alt proces major ce produce elemente mai grele decât fierul este s-procesul din stelele gigante roșii, mari și
Supernovă () [Corola-website/Science/304000_a_305329]
-
californiu. Singurul alt proces major ce produce elemente mai grele decât fierul este s-procesul din stelele gigante roșii, mari și vechi, unde se produc aceste elemente mult mai lent, și oricum nu elemente mai grele decât plumbul. Rămășița unei supernove constă dintr-un obiect compact și o undă de șoc de material ce se extinde rapid. Acest nor de material mătură mediul interstelar înconjurător într-o fază de expansiune liberă, ce poate dura până la două secole. Unda apoi trece, treptat
Supernovă () [Corola-website/Science/304000_a_305329]
-
încet cu mediul interstelar înconjurător de-a lungul unei perioade de aproximativ 10.000 de ani. În astronomia standard, Big Bangul a produs hidrogen, heliu și puțin litiu, pe când toate celelalte elemente mai grele au fost sintetizate în stele și supernove. Supernovele tind să îmbogățească mediul interstelar cu "metal"e, termen ce înseamnă, pentru astronomi, toate elementele în afara hidrogenului și heliului, definiție diferită de cea din chimie. Aceste elemente injectate îmbogățesc în cele din urmă norii moleculari în care se formează
Supernovă () [Corola-website/Science/304000_a_305329]
-
cu mediul interstelar înconjurător de-a lungul unei perioade de aproximativ 10.000 de ani. În astronomia standard, Big Bangul a produs hidrogen, heliu și puțin litiu, pe când toate celelalte elemente mai grele au fost sintetizate în stele și supernove. Supernovele tind să îmbogățească mediul interstelar cu "metal"e, termen ce înseamnă, pentru astronomi, toate elementele în afara hidrogenului și heliului, definiție diferită de cea din chimie. Aceste elemente injectate îmbogățesc în cele din urmă norii moleculari în care se formează stelele
Supernovă () [Corola-website/Science/304000_a_305329]
-
Aceste elemente injectate îmbogățesc în cele din urmă norii moleculari în care se formează stelele. Astfel, fiecare generație stelară are o compoziție ușor diferită, de la un amestec aproape pur de hidrogen și heliu până la o compoziție mai bogată în metale. Supernovele sunt mecanismul principal de distribuție în spațiu al acestor elemente grele, formate într-o stea în perioada sa de fuziune nucleară. Abundența diferită de elemente în materialul ce formează o stea are o importantă influență asupra vieții stelei, și ar
Supernovă () [Corola-website/Science/304000_a_305329]
-
perioada sa de fuziune nucleară. Abundența diferită de elemente în materialul ce formează o stea are o importantă influență asupra vieții stelei, și ar putea influența decisiv posibilitatea existenței de planete pe orbita acesteia. Energia cinetică a unei rămășițe de supernovă în expansiune poate declanșa formarea de stele din cauza compresiei norilor moleculari denși aflați în spațiul din apropiere. Creșterea de presiune turbulentă poate și preveni formarea de stele dacă norul nu poate pierde energia în exces. Dovezi din produsele rezultate din
Supernovă () [Corola-website/Science/304000_a_305329]
-
de stele din cauza compresiei norilor moleculari denși aflați în spațiul din apropiere. Creșterea de presiune turbulentă poate și preveni formarea de stele dacă norul nu poate pierde energia în exces. Dovezi din produsele rezultate din izotopii radioactivi arată că o supernovă aflată în apropiere a ajutat la determinarea compoziției Sistemului Solar acum 4,5 miliarde de ani, și ar fi putut chiar să fi declanșat formarea acestui sistem. O supernovă apropiată de Pământ este o explozie ce ar avea ca rezultat
Supernovă () [Corola-website/Science/304000_a_305329]
-
exces. Dovezi din produsele rezultate din izotopii radioactivi arată că o supernovă aflată în apropiere a ajutat la determinarea compoziției Sistemului Solar acum 4,5 miliarde de ani, și ar fi putut chiar să fi declanșat formarea acestui sistem. O supernovă apropiată de Pământ este o explozie ce ar avea ca rezultat moartea unei stele aflate suficient de aproape de Pământ (la mai puțin de 100 ani-lumină) pentru a avea efecte observabile asupra biosferei. Razele gamma de la o supernovă induc o reacție
Supernovă () [Corola-website/Science/304000_a_305329]