4,224 matches
-
sursa de neutroni. Acest efect este folosit pentru creșterea energiei eliberate de armele termonucleare, prin blindarea bombelor cu U ce interacționează cu neutronii eliberați de fuziunea nucleară din centrul bombei. Reactoarele cu fisiune critică reprezintă cel mai comun tip de reactor nuclear. Într-un astfel de reactor, neutronii produși de fisionarea atomilor combustibilului sunt folosiți pentru a induce, în continuare, alte fisiuni și pentru a menține controlul cantității de energie eliberată. Reactoarele în care se produc fisiuni dar nu fisiuni autoîntreținute
Fisiune nucleară () [Corola-website/Science/304270_a_305599]
-
folosit pentru creșterea energiei eliberate de armele termonucleare, prin blindarea bombelor cu U ce interacționează cu neutronii eliberați de fuziunea nucleară din centrul bombei. Reactoarele cu fisiune critică reprezintă cel mai comun tip de reactor nuclear. Într-un astfel de reactor, neutronii produși de fisionarea atomilor combustibilului sunt folosiți pentru a induce, în continuare, alte fisiuni și pentru a menține controlul cantității de energie eliberată. Reactoarele în care se produc fisiuni dar nu fisiuni autoîntreținute se numesc reactoare de fisiune subcritice
Fisiune nucleară () [Corola-website/Science/304270_a_305599]
-
cu fisiune critică reprezintă cel mai comun tip de reactor nuclear. Într-un astfel de reactor, neutronii produși de fisionarea atomilor combustibilului sunt folosiți pentru a induce, în continuare, alte fisiuni și pentru a menține controlul cantității de energie eliberată. Reactoarele în care se produc fisiuni dar nu fisiuni autoîntreținute se numesc reactoare de fisiune subcritice. Pentru declanșarea fisiunii în acest tip de reactoare se folosesc fie dezintegrările radioactive, fie acceleratoare de particule. Reactoarele cu fisiune critică sunt construite pentru trei
Fisiune nucleară () [Corola-website/Science/304270_a_305599]
-
un astfel de reactor, neutronii produși de fisionarea atomilor combustibilului sunt folosiți pentru a induce, în continuare, alte fisiuni și pentru a menține controlul cantității de energie eliberată. Reactoarele în care se produc fisiuni dar nu fisiuni autoîntreținute se numesc reactoare de fisiune subcritice. Pentru declanșarea fisiunii în acest tip de reactoare se folosesc fie dezintegrările radioactive, fie acceleratoare de particule. Reactoarele cu fisiune critică sunt construite pentru trei scopuri principale care, în general, presupun metode diferite de exploatare a căldurii
Fisiune nucleară () [Corola-website/Science/304270_a_305599]
-
folosiți pentru a induce, în continuare, alte fisiuni și pentru a menține controlul cantității de energie eliberată. Reactoarele în care se produc fisiuni dar nu fisiuni autoîntreținute se numesc reactoare de fisiune subcritice. Pentru declanșarea fisiunii în acest tip de reactoare se folosesc fie dezintegrările radioactive, fie acceleratoare de particule. Reactoarele cu fisiune critică sunt construite pentru trei scopuri principale care, în general, presupun metode diferite de exploatare a căldurii și a neutronilor produși prin reacția de fisiune în lanț: Deși
Fisiune nucleară () [Corola-website/Science/304270_a_305599]
-
a menține controlul cantității de energie eliberată. Reactoarele în care se produc fisiuni dar nu fisiuni autoîntreținute se numesc reactoare de fisiune subcritice. Pentru declanșarea fisiunii în acest tip de reactoare se folosesc fie dezintegrările radioactive, fie acceleratoare de particule. Reactoarele cu fisiune critică sunt construite pentru trei scopuri principale care, în general, presupun metode diferite de exploatare a căldurii și a neutronilor produși prin reacția de fisiune în lanț: Deși, în principiu, orice reactor de fisiune poate să funcționeze în
Fisiune nucleară () [Corola-website/Science/304270_a_305599]
-
dezintegrările radioactive, fie acceleratoare de particule. Reactoarele cu fisiune critică sunt construite pentru trei scopuri principale care, în general, presupun metode diferite de exploatare a căldurii și a neutronilor produși prin reacția de fisiune în lanț: Deși, în principiu, orice reactor de fisiune poate să funcționeze în toate cele trei moduri, în practică fiecare reactor este construit numai pentru una dintre aceste trei sarcini. (Contra-exemplu: reactorul N de la Hanford, în prezent dezafectat). Reactoarele de putere convertesc energia cinetică a produșilor de
Fisiune nucleară () [Corola-website/Science/304270_a_305599]
-
scopuri principale care, în general, presupun metode diferite de exploatare a căldurii și a neutronilor produși prin reacția de fisiune în lanț: Deși, în principiu, orice reactor de fisiune poate să funcționeze în toate cele trei moduri, în practică fiecare reactor este construit numai pentru una dintre aceste trei sarcini. (Contra-exemplu: reactorul N de la Hanford, în prezent dezafectat). Reactoarele de putere convertesc energia cinetică a produșilor de fisiune în căldură utilizată la încălzirea unui fluid de lucru care, la rândul său
Fisiune nucleară () [Corola-website/Science/304270_a_305599]
-
căldurii și a neutronilor produși prin reacția de fisiune în lanț: Deși, în principiu, orice reactor de fisiune poate să funcționeze în toate cele trei moduri, în practică fiecare reactor este construit numai pentru una dintre aceste trei sarcini. (Contra-exemplu: reactorul N de la Hanford, în prezent dezafectat). Reactoarele de putere convertesc energia cinetică a produșilor de fisiune în căldură utilizată la încălzirea unui fluid de lucru care, la rândul său, este trecut printr-un motor termic ce generează energie (putere) mecanică
Fisiune nucleară () [Corola-website/Science/304270_a_305599]
-
de fisiune în lanț: Deși, în principiu, orice reactor de fisiune poate să funcționeze în toate cele trei moduri, în practică fiecare reactor este construit numai pentru una dintre aceste trei sarcini. (Contra-exemplu: reactorul N de la Hanford, în prezent dezafectat). Reactoarele de putere convertesc energia cinetică a produșilor de fisiune în căldură utilizată la încălzirea unui fluid de lucru care, la rândul său, este trecut printr-un motor termic ce generează energie (putere) mecanică sau electrică. Fluidul de lucru este în
Fisiune nucleară () [Corola-website/Science/304270_a_305599]
-
căldură utilizată la încălzirea unui fluid de lucru care, la rândul său, este trecut printr-un motor termic ce generează energie (putere) mecanică sau electrică. Fluidul de lucru este în mod uzual apa într-o turbină cu aburi, dar unele reactoare folosesc alte materiale cum ar fi heliu. Reactoarele de cercetare produc neutroni care sunt folosiți în diferite moduri, căldura de fisiune fiind tratată ca un deșeu inevitabil. Reactoarele reproducătoare sunt specializate din reactoarele de cercetare cu mențiunea că materialul ce
Fisiune nucleară () [Corola-website/Science/304270_a_305599]
-
care, la rândul său, este trecut printr-un motor termic ce generează energie (putere) mecanică sau electrică. Fluidul de lucru este în mod uzual apa într-o turbină cu aburi, dar unele reactoare folosesc alte materiale cum ar fi heliu. Reactoarele de cercetare produc neutroni care sunt folosiți în diferite moduri, căldura de fisiune fiind tratată ca un deșeu inevitabil. Reactoarele reproducătoare sunt specializate din reactoarele de cercetare cu mențiunea că materialul ce urmează a fi iradiat este combustibilul însuși (un
Fisiune nucleară () [Corola-website/Science/304270_a_305599]
-
este în mod uzual apa într-o turbină cu aburi, dar unele reactoare folosesc alte materiale cum ar fi heliu. Reactoarele de cercetare produc neutroni care sunt folosiți în diferite moduri, căldura de fisiune fiind tratată ca un deșeu inevitabil. Reactoarele reproducătoare sunt specializate din reactoarele de cercetare cu mențiunea că materialul ce urmează a fi iradiat este combustibilul însuși (un amestec de U și U). Rezultatele bombardării uraniului cu neutroni s-au dovedit a fi interesante și enigmatice. Studiate prima
Fisiune nucleară () [Corola-website/Science/304270_a_305599]
-
într-o turbină cu aburi, dar unele reactoare folosesc alte materiale cum ar fi heliu. Reactoarele de cercetare produc neutroni care sunt folosiți în diferite moduri, căldura de fisiune fiind tratată ca un deșeu inevitabil. Reactoarele reproducătoare sunt specializate din reactoarele de cercetare cu mențiunea că materialul ce urmează a fi iradiat este combustibilul însuși (un amestec de U și U). Rezultatele bombardării uraniului cu neutroni s-au dovedit a fi interesante și enigmatice. Studiate prima dată de Enrico Fermi și
Fisiune nucleară () [Corola-website/Science/304270_a_305599]
-
ajunsese deja la o sută. Ținta majoră a primelor cercetări de fisiune a fost producerea unei reacții nucleare în lanț controlată, care ar fi condus la realizarea unei prime centrale nuclearo-electrice. Aceasta a condus la construirea lui Chicago Pile-1, primul reactor nuclear cu fisiune critică din lume realizat de om (care a folosit uraniu, singurul combustibil nuclear disponibil în cantități utile) și la proiectul Manhattan destinat dezvoltării armelor nucleare. Producerea în lanț a reacției de fisiune folosind uraniu drept combustibil nuclear
Fisiune nucleară () [Corola-website/Science/304270_a_305599]
-
care a folosit uraniu, singurul combustibil nuclear disponibil în cantități utile) și la proiectul Manhattan destinat dezvoltării armelor nucleare. Producerea în lanț a reacției de fisiune folosind uraniu drept combustibil nuclear este departe de a fi un lucru ușor. Vechile reactoare nucleare nu au folosit uraniu îmbogățit și, prin urmare, a fost necesară utilizarea unei cantități mari de grafit purificat pe post de material moderator de neutroni. Folosirea apei ușoare (în opoziție cu apa grea) într-un reactor nuclear presupune utilizarea
Fisiune nucleară () [Corola-website/Science/304270_a_305599]
-
lucru ușor. Vechile reactoare nucleare nu au folosit uraniu îmbogățit și, prin urmare, a fost necesară utilizarea unei cantități mari de grafit purificat pe post de material moderator de neutroni. Folosirea apei ușoare (în opoziție cu apa grea) într-un reactor nuclear presupune utilizarea de combustibil îmbogățit (obținut prin creșterea conținutului mai rar răspânditului izotop U din minereul natural conținând cu precădere izotopul U). În mod normal, reactoarele presupun includerea, pe post de moderator de neutroni, a materialelor extrem de pure chimic
Fisiune nucleară () [Corola-website/Science/304270_a_305599]
-
moderator de neutroni. Folosirea apei ușoare (în opoziție cu apa grea) într-un reactor nuclear presupune utilizarea de combustibil îmbogățit (obținut prin creșterea conținutului mai rar răspânditului izotop U din minereul natural conținând cu precădere izotopul U). În mod normal, reactoarele presupun includerea, pe post de moderator de neutroni, a materialelor extrem de pure chimic cum ar fi deuteriu (în apa grea), heliu, beriliu sau carbon sub formă de grafit. (Înalta puritate este cerută deoarece multe impurități chimice, cum ar fi borul
Fisiune nucleară () [Corola-website/Science/304270_a_305599]
-
de asemenea rezultatelor lui Szilard conform cărora grafitul foarte pur poate fi folosit ca moderator în „pilele” cu uraniu natural. În timpul celui de al doilea război mondial, în Germania, neîncrederea în calitățile grafitului foarte pur a condus la proiectarea unui reactor depinzând de apa grea, produsă în Norvegia, dar „interzisă” germanilor în urma atacurilor distrugătoare ale aliaților. Aceste dificultăți i-au împiedicat pe naziști să construiască un reactor în timpul războiului. Fapt necunoscut până în anul 1972, când fizicianul francez Francis Perrin a descoperit
Fisiune nucleară () [Corola-website/Science/304270_a_305599]
-
mondial, în Germania, neîncrederea în calitățile grafitului foarte pur a condus la proiectarea unui reactor depinzând de apa grea, produsă în Norvegia, dar „interzisă” germanilor în urma atacurilor distrugătoare ale aliaților. Aceste dificultăți i-au împiedicat pe naziști să construiască un reactor în timpul războiului. Fapt necunoscut până în anul 1972, când fizicianul francez Francis Perrin a descoperit „Reactoarele Fosile de la Oklo”, natura a luat-o înaintea omului în ceea ce privește reacția de fisiune în lanț a uraniului încă de acum 2 miliarde de ani. Acest
Fisiune nucleară () [Corola-website/Science/304270_a_305599]
-
depinzând de apa grea, produsă în Norvegia, dar „interzisă” germanilor în urma atacurilor distrugătoare ale aliaților. Aceste dificultăți i-au împiedicat pe naziști să construiască un reactor în timpul războiului. Fapt necunoscut până în anul 1972, când fizicianul francez Francis Perrin a descoperit „Reactoarele Fosile de la Oklo”, natura a luat-o înaintea omului în ceea ce privește reacția de fisiune în lanț a uraniului încă de acum 2 miliarde de ani. Acest proces a putut folosi ca moderator apa ușoară deoarece acum 2 miliarde de ani uraniul
Fisiune nucleară () [Corola-website/Science/304270_a_305599]
-
de fisiune (masă critică) poate să conducă la o eliberare explozivă de energie, acesta fiind, de altfel, modul de funcționare al armelor nucleare. Reacția în lanț poate fi, însă, controlată în mod adecvat și folosită ca sursă de energie (în reactoarele nucleare). Intuitiv, ecuațiile de fisiune s-ar putea scrie: •U-235 + 1 neutron = fragmente de fisiune +2,52 neutroni + 189 MeV •Pu-239 + 1 neutron = fragmente de fisiune +2,95 neutroni + 200 MeV Nu s-au luat în calcul cei 10 MeV
Reacție nucleară în lanț () [Corola-website/Science/304271_a_305600]
-
tipic de ordinul câtorva secunde, și se dezintegrează producând neutroni suplimentari. În mod uzual, populația de neutroni emiși se împarte în două categorii: "neutroni prompți" și "neutroni întârziați". Procentul neutronilor întârziați este mai mic de 1% din total. Într-un reactor nuclear, pentru a avea un proces stabil, valoarea "k" trebuie să fie în jur de 1. Când se atinge valoarea "k" = 1 luând în calcul toți neutronii obținuți prin fisiune, reacția se numește "critică". Aceasta este situația atinsă într-un
Reacție nucleară în lanț () [Corola-website/Science/304271_a_305600]
-
nuclear, pentru a avea un proces stabil, valoarea "k" trebuie să fie în jur de 1. Când se atinge valoarea "k" = 1 luând în calcul toți neutronii obținuți prin fisiune, reacția se numește "critică". Aceasta este situația atinsă într-un reactor nuclear. Acum modificările de putere sunt mici și controlabile cu ajutorul barelor de control. Când valoarea "k" = 1 se obține luând în calcul numai neutronii prompți, reacție se numește "prompt-critică" - poate să apară o rată de dublare mult mai mică, depinzând
Reacție nucleară în lanț () [Corola-website/Science/304271_a_305600]
-
în testul de detectare a acizilor organici, aldehidelor și gazelor acide. Plumbul este, de asemenea, folosit ca în protejarea împotriva radiațiilor, cum ar fi împotriva razelor Röntgen în radiologie. Mai este folosit ca material de răcire, cum ar fi în reactoarele cu răcire pe bază de plumb. Plumbul mai este adăugat la alamă (aliaj de cupru cu zinc) pentru a reduce uzura mașinilor de tăiere a metalelor. În trecut în rachetele de tenis se adăuga plumb pentru a-i crește greutatea
Plumb () [Corola-website/Science/304276_a_305605]