4,140 matches
-
sarcina electronului e = 1,6 ·10 -19 C 1. Unitatea de măsură pentru lungimea de undă în S.I. este : a. m / s; b. m ; c. s ; d.m -1 . 2. Un obiect este așezat la distanța d = 5cm în fața unei lentile convergente cu distanța focală f = 10cm . Imaginea obiectului prin lentilă va fi: a. virtuală, răsturnată ; b. reală, dreaptă ; c. virtuală, dreaptă; d. reală, răsturnată. 63 3. O rază de lumină trece dintr-un mediu cu indice de refracție n1 = 1
CALEIDOSCOP DE OPTICĂ by DELLIA-RAISSA FORŢU () [Corola-publishinghouse/Science/541_a_1064]
-
de măsură pentru lungimea de undă în S.I. este : a. m / s; b. m ; c. s ; d.m -1 . 2. Un obiect este așezat la distanța d = 5cm în fața unei lentile convergente cu distanța focală f = 10cm . Imaginea obiectului prin lentilă va fi: a. virtuală, răsturnată ; b. reală, dreaptă ; c. virtuală, dreaptă; d. reală, răsturnată. 63 3. O rază de lumină trece dintr-un mediu cu indice de refracție n1 = 1,41 în aer în=1). Unghiul de incidență pentru care
CALEIDOSCOP DE OPTICĂ by DELLIA-RAISSA FORŢU () [Corola-publishinghouse/Science/541_a_1064]
-
de lumină trece dintr-un mediu cu indice de refracție n1 = 1,41 în aer în=1). Unghiul de incidență pentru care unghiul de refracție este r = 90° este: a. 45°; b. 30°; c. 15°; d. 0°. 4. Convergența unei lentile cu distanța focală f = 20cm este: a. C = 2dioptrii; b. C = 5dioptrii; c. C = 3dioptrii; d. C = 4dioptrii. 5. Fenomenul de trecere a razei de lumină dintr-un mediu transparent în alt mediu transparent, cu schimbarea direcției de propagare se
CALEIDOSCOP DE OPTICĂ by DELLIA-RAISSA FORŢU () [Corola-publishinghouse/Science/541_a_1064]
-
suprafața catodului cad radiații electromagnetice cu lungimea de undă λ = 214nm. 64 Se consideră : constanta lui Planck h = 6,625· 10-34 J · s masa de repaus a electronului m0 = 9,1·10 -31 Kg 1. Dioptria reprezintă valoarea convergenței unei lentile cu distanța focală de: a.1mm; b.1cm; c.100cm; d.10m. 2. O rază de lumină trece din sticlă î nsticlă = 1,5 ) în apă î napă = 4 / 3 ) sub unghiul de incideță i = 30°. Unghiul sub care se
CALEIDOSCOP DE OPTICĂ by DELLIA-RAISSA FORŢU () [Corola-publishinghouse/Science/541_a_1064]
-
3 ) sub unghiul de incideță i = 30°. Unghiul sub care se refractă raza de lumină la trecerea din sticlă în apă este: a. arcsin 0,562; b. arcsin 0,625; c. arcsin 0,724; d. arcsin 0,856. 3. O lentilă plan convexă cu raza de curbură a suprafeței sferice de 10cm este confecționată dintr-un material care are indicele de refracție n = 1,5. Distanța focală a lentilei este: a. 10cm; b. 20cm; c. 25cm; d. 50cm. 4. Două lentile
CALEIDOSCOP DE OPTICĂ by DELLIA-RAISSA FORŢU () [Corola-publishinghouse/Science/541_a_1064]
-
0,625; c. arcsin 0,724; d. arcsin 0,856. 3. O lentilă plan convexă cu raza de curbură a suprafeței sferice de 10cm este confecționată dintr-un material care are indicele de refracție n = 1,5. Distanța focală a lentilei este: a. 10cm; b. 20cm; c. 25cm; d. 50cm. 4. Două lentile convergente cu distanțele focale f1 = 20cm și respectiv f2 = 25cm sunt alipite și formează un sistem optic. Convergența sistemului optic format este: a. 4 m -1 ; b. 5
CALEIDOSCOP DE OPTICĂ by DELLIA-RAISSA FORŢU () [Corola-publishinghouse/Science/541_a_1064]
-
lentilă plan convexă cu raza de curbură a suprafeței sferice de 10cm este confecționată dintr-un material care are indicele de refracție n = 1,5. Distanța focală a lentilei este: a. 10cm; b. 20cm; c. 25cm; d. 50cm. 4. Două lentile convergente cu distanțele focale f1 = 20cm și respectiv f2 = 25cm sunt alipite și formează un sistem optic. Convergența sistemului optic format este: a. 4 m -1 ; b. 5 m -1 ; c. 8 m -1 ; d. 9 m -1 . 5. Energia
CALEIDOSCOP DE OPTICĂ by DELLIA-RAISSA FORŢU () [Corola-publishinghouse/Science/541_a_1064]
-
1. 1. Imaginile reale: a. se formează la intersecția prelungirii razelor de lumină ; b. nu pot juca rol de obiect pentru un alt sistem optic ; c. se formează doar pentru obiecte reale ; d. pot fi observate pe ecrane. 2. O lentilă biconvexă cu distanța focală f formează o imagine reală, răsturnată și egală cu obiectul real. În această situație, obiectul se află, față de lentilă, la o distanță: a. mai mare decât f ; b. cuprinsă între f și 2f; c. egală cu
CALEIDOSCOP DE OPTICĂ by DELLIA-RAISSA FORŢU () [Corola-publishinghouse/Science/541_a_1064]
-
sistem optic ; c. se formează doar pentru obiecte reale ; d. pot fi observate pe ecrane. 2. O lentilă biconvexă cu distanța focală f formează o imagine reală, răsturnată și egală cu obiectul real. În această situație, obiectul se află, față de lentilă, la o distanță: a. mai mare decât f ; b. cuprinsă între f și 2f; c. egală cu 2f; d. mai mică decât f. 3. O radiație monocromatică cu frecvența ν = 5·1014 Hz se propagă printr o lamă de sticlă
CALEIDOSCOP DE OPTICĂ by DELLIA-RAISSA FORŢU () [Corola-publishinghouse/Science/541_a_1064]
-
află la distanța de 82cm față de podea. 67 Înălțimea minimă a oglinzii, pentru ca omul să se poată vedea în întregime în oglindă este: a. 0,6m; b. 0,9 m; c. 1,2 m; d. 1,5 m. 3. O lentilă subțire biconcavă) confecționată dintr-un material cu indicele de refracție n = 1,5, plasată în aer, are razele de curbură R1 = 1m, respectiv R2 = 2 m. Distanța focală a lentilei este: a. f = 3/4; b. f = 4/3; c
CALEIDOSCOP DE OPTICĂ by DELLIA-RAISSA FORŢU () [Corola-publishinghouse/Science/541_a_1064]
-
c. 1,2 m; d. 1,5 m. 3. O lentilă subțire biconcavă) confecționată dintr-un material cu indicele de refracție n = 1,5, plasată în aer, are razele de curbură R1 = 1m, respectiv R2 = 2 m. Distanța focală a lentilei este: a. f = 3/4; b. f = 4/3; c. f = 3/4; d. f = 4/3. 4. Dimensiunea imaginii reale a unui obiect așezat vertical pe axul optic principal al unei lentile biconvexe este mai mare decat dimensiunea obiectului
CALEIDOSCOP DE OPTICĂ by DELLIA-RAISSA FORŢU () [Corola-publishinghouse/Science/541_a_1064]
-
respectiv R2 = 2 m. Distanța focală a lentilei este: a. f = 3/4; b. f = 4/3; c. f = 3/4; d. f = 4/3. 4. Dimensiunea imaginii reale a unui obiect așezat vertical pe axul optic principal al unei lentile biconvexe este mai mare decat dimensiunea obiectului în cazul în care coordonata obiectului, x1 , îndeplinește condiția: a. 3f > x1> 2f; b. − x1 = f; c. f < − x1 < 2f ; d. f < − x1 < 0. 5. O lentilă biconvexă din sticlă în=1,5
CALEIDOSCOP DE OPTICĂ by DELLIA-RAISSA FORŢU () [Corola-publishinghouse/Science/541_a_1064]
-
pe axul optic principal al unei lentile biconvexe este mai mare decat dimensiunea obiectului în cazul în care coordonata obiectului, x1 , îndeplinește condiția: a. 3f > x1> 2f; b. − x1 = f; c. f < − x1 < 2f ; d. f < − x1 < 0. 5. O lentilă biconvexă din sticlă în=1,5), situată în aer, are distanța focală f. Lentila este introdusă pe rând în patru lichide având indicii de refracție n1 = 1,2 , n2 = 4 / 3 , n3 = 1,4 , n4 = 5 / 3. Lentila devine divergentă
CALEIDOSCOP DE OPTICĂ by DELLIA-RAISSA FORŢU () [Corola-publishinghouse/Science/541_a_1064]
-
în cazul în care coordonata obiectului, x1 , îndeplinește condiția: a. 3f > x1> 2f; b. − x1 = f; c. f < − x1 < 2f ; d. f < − x1 < 0. 5. O lentilă biconvexă din sticlă în=1,5), situată în aer, are distanța focală f. Lentila este introdusă pe rând în patru lichide având indicii de refracție n1 = 1,2 , n2 = 4 / 3 , n3 = 1,4 , n4 = 5 / 3. Lentila devine divergentă dacă se cufundă în lichidul cu indicele de refracție : a. n1; b. n2; c
CALEIDOSCOP DE OPTICĂ by DELLIA-RAISSA FORŢU () [Corola-publishinghouse/Science/541_a_1064]
-
5. O lentilă biconvexă din sticlă în=1,5), situată în aer, are distanța focală f. Lentila este introdusă pe rând în patru lichide având indicii de refracție n1 = 1,2 , n2 = 4 / 3 , n3 = 1,4 , n4 = 5 / 3. Lentila devine divergentă dacă se cufundă în lichidul cu indicele de refracție : a. n1; b. n2; c. n3; d. n4. 6. Un fascicul de lumină monocromatică cu λ = 0,45μm iluminează catodul unei celule fotoelectrice având pragul fotoelectric λ0 = 0,55μm
CALEIDOSCOP DE OPTICĂ by DELLIA-RAISSA FORŢU () [Corola-publishinghouse/Science/541_a_1064]
-
frecvențe, care asigură senzația de lumină este, aproximativ, 0,15·10 -19 J. Numărul minim de fotoni „verzi" care impresionează retina este, aproximativ: a. 1; b. 10; c. 280; d. 10 16 . 3. Un sistem afocal este format din două lentile subțiri aflate la 40 cm una de alta. Una dintre lentile are convergența de 5 dioptrii. Distanța focală a celei de a doua lentile este: a. 10 cm; b. 20 cm; c. 30 cm; d. 40 cm. 4. Un punct
CALEIDOSCOP DE OPTICĂ by DELLIA-RAISSA FORŢU () [Corola-publishinghouse/Science/541_a_1064]
-
-19 J. Numărul minim de fotoni „verzi" care impresionează retina este, aproximativ: a. 1; b. 10; c. 280; d. 10 16 . 3. Un sistem afocal este format din două lentile subțiri aflate la 40 cm una de alta. Una dintre lentile are convergența de 5 dioptrii. Distanța focală a celei de a doua lentile este: a. 10 cm; b. 20 cm; c. 30 cm; d. 40 cm. 4. Un punct luminos se află pe axa optică principală a unei lentile sferice
CALEIDOSCOP DE OPTICĂ by DELLIA-RAISSA FORŢU () [Corola-publishinghouse/Science/541_a_1064]
-
1; b. 10; c. 280; d. 10 16 . 3. Un sistem afocal este format din două lentile subțiri aflate la 40 cm una de alta. Una dintre lentile are convergența de 5 dioptrii. Distanța focală a celei de a doua lentile este: a. 10 cm; b. 20 cm; c. 30 cm; d. 40 cm. 4. Un punct luminos se află pe axa optică principală a unei lentile sferice subțiri, convergente, la 20 cm înaintea focarului obiect al lentilei. Imaginea sa reală
CALEIDOSCOP DE OPTICĂ by DELLIA-RAISSA FORŢU () [Corola-publishinghouse/Science/541_a_1064]
-
dintre lentile are convergența de 5 dioptrii. Distanța focală a celei de a doua lentile este: a. 10 cm; b. 20 cm; c. 30 cm; d. 40 cm. 4. Un punct luminos se află pe axa optică principală a unei lentile sferice subțiri, convergente, la 20 cm înaintea focarului obiect al lentilei. Imaginea sa reală se formează la 45 cm după focarul imagine al lentilei. Distanța focală a lentilei este: a. 14 cm; b. 25 cm; c. 30 cm; d. 36
CALEIDOSCOP DE OPTICĂ by DELLIA-RAISSA FORŢU () [Corola-publishinghouse/Science/541_a_1064]
-
de a doua lentile este: a. 10 cm; b. 20 cm; c. 30 cm; d. 40 cm. 4. Un punct luminos se află pe axa optică principală a unei lentile sferice subțiri, convergente, la 20 cm înaintea focarului obiect al lentilei. Imaginea sa reală se formează la 45 cm după focarul imagine al lentilei. Distanța focală a lentilei este: a. 14 cm; b. 25 cm; c. 30 cm; d. 36 cm. 5.Graficul alăturat din Fig.2.17. reprezintă dependența inversului
CALEIDOSCOP DE OPTICĂ by DELLIA-RAISSA FORŢU () [Corola-publishinghouse/Science/541_a_1064]
-
cm; d. 40 cm. 4. Un punct luminos se află pe axa optică principală a unei lentile sferice subțiri, convergente, la 20 cm înaintea focarului obiect al lentilei. Imaginea sa reală se formează la 45 cm după focarul imagine al lentilei. Distanța focală a lentilei este: a. 14 cm; b. 25 cm; c. 30 cm; d. 36 cm. 5.Graficul alăturat din Fig.2.17. reprezintă dependența inversului valorii măririi liniare transversale de valoarea distanței dintre un obiect real și o
CALEIDOSCOP DE OPTICĂ by DELLIA-RAISSA FORŢU () [Corola-publishinghouse/Science/541_a_1064]
-
4. Un punct luminos se află pe axa optică principală a unei lentile sferice subțiri, convergente, la 20 cm înaintea focarului obiect al lentilei. Imaginea sa reală se formează la 45 cm după focarul imagine al lentilei. Distanța focală a lentilei este: a. 14 cm; b. 25 cm; c. 30 cm; d. 36 cm. 5.Graficul alăturat din Fig.2.17. reprezintă dependența inversului valorii măririi liniare transversale de valoarea distanței dintre un obiect real și o lentilă convergentă. Convergența lentilei
CALEIDOSCOP DE OPTICĂ by DELLIA-RAISSA FORŢU () [Corola-publishinghouse/Science/541_a_1064]
-
Distanța focală a lentilei este: a. 14 cm; b. 25 cm; c. 30 cm; d. 36 cm. 5.Graficul alăturat din Fig.2.17. reprezintă dependența inversului valorii măririi liniare transversale de valoarea distanței dintre un obiect real și o lentilă convergentă. Convergența lentilei are valoarea: a. 2,5m -1 ; b. 4,5m -1 ; c. 3,0m -1; 69 d. 7,5m -1 . 6. Iradiind succesiv suprafața unui fotocatod cu două radiații monocromatice având lungimile de undă λ1 = 350nm și λ2
CALEIDOSCOP DE OPTICĂ by DELLIA-RAISSA FORŢU () [Corola-publishinghouse/Science/541_a_1064]
-
lentilei este: a. 14 cm; b. 25 cm; c. 30 cm; d. 36 cm. 5.Graficul alăturat din Fig.2.17. reprezintă dependența inversului valorii măririi liniare transversale de valoarea distanței dintre un obiect real și o lentilă convergentă. Convergența lentilei are valoarea: a. 2,5m -1 ; b. 4,5m -1 ; c. 3,0m -1; 69 d. 7,5m -1 . 6. Iradiind succesiv suprafața unui fotocatod cu două radiații monocromatice având lungimile de undă λ1 = 350nm și λ2 = 540nm, viteza maximă
CALEIDOSCOP DE OPTICĂ by DELLIA-RAISSA FORŢU () [Corola-publishinghouse/Science/541_a_1064]
-
1,2eV; b. 0,25eV; c. 1,05eV; d. 12,5eV. Se consideră: viteza luminii în vid c = 3·108 m/ s constanta Planck h = 6,625· 10 -34 J · s 1. Dacă imaginea unui obiect real aflat în fața unei lentile convergente este dreaptă, putem afirma că, totodată, imaginea este: a. micșorată și reală; b. mărită și reală; c. micșorată și virtuală; d. mărită și virtuală. 2. O condiție obligatorie pentru producerea efectului fotoelectric extern este ca: a. intensitatea radiației incidente
CALEIDOSCOP DE OPTICĂ by DELLIA-RAISSA FORŢU () [Corola-publishinghouse/Science/541_a_1064]