1,235 matches
-
termic (denumit și "efect Joule-Lenz") este reprezentat de disiparea căldurii într-un conductor traversat de un curent electric. Aceasta se datorează interacțiunii particulelor curentului (de regulă electroni) cu atomii conductorului, interacțiuni prin care primele le cedează ultimilor din energia lor cinetică, contribuind la mărirea agitației termice în masa conductorului. Produsele tehnice (dispozitive, aparate, utilaje) folosite la încălzire industrială, precum și pentru uzul casnic, funcționează pe baza efectului Termic. Elementul constructiv de circuit comun în alcătuirea acestor produse este un rezistor (sau mai
Efectele curentului electric () [Corola-website/Science/312275_a_313604]
-
mai mare decât energia de legătură a electronilor, în rețea se formează fononi, în exterior se emit electroni. La un semiconductor impurificat sub influența luminii apare efectul fotooelectric, iar energia radiației incidente este preluată de purtătorii de sarcină și energia cinetică a acestora crește. Am văzut că în joncțiunea pn apare o barieră de potential; sub influența luminii, la o joncțiune fotosensibilă, mărimea barierei crește. Un element care conține o asemenea joncțiune se numește fotoelement și este un generator de tensiune
Efectele curentului electric () [Corola-website/Science/312275_a_313604]
-
sau doi semiconductori diferiți și zona de contact, de exemplu între cupru și fier apare o tensiune electromotoare de contact. Dacă prin joncțiune trece un curent electric cu semnul de la cupru la fier, electronii din zona de contact capătă energie cinetică suplimentară și temperatura joncțiunii crește; la trecerea unui curent în sens invers, temperatura joncțiunii scade. Dacă într-un circuit electric cu două joncțiuni ca cele de mai sus, circulă un curent electric cu sens adecvat, se poate realiza un transport
Efectele curentului electric () [Corola-website/Science/312275_a_313604]
-
a fost introdusă de către Ludwig Boltzmann în 1884 (vezi articolele Entropia termodinamică (exemple simple) și Entropia radiației electromagnetice). În același timp, o serie de proprietăți ale gazelor (ecuația de stare, coeficienții de difuzie, etc.) au putut fi explicate prin "teoria cinetică" a lui James Clerk Maxwell și Ludwig Boltzmann. Ipoteza centrală era că gazele sunt un ansamblu de mici sfere solide, care se supun mecanicii clasice dar în același timp au o distribuție a vitezelor și pozițiilor haotice, constrânse numai de
Formula lui Planck () [Corola-website/Science/315089_a_316418]
-
accesibile moleculelor gazului atunci când parametrii exteriori sunt fixați (adică pentru o "macrostare" determinată). Forma celebră a acestei identificări este dată de formula: unde k este o constantă universală (constanta lui Boltzmann), relație care are o validitate care depășește cadrul teoriei cinetice. Un rezultat cunoscut al lui L.Boltzmann ("teorema H") este că—sub o ipoteză de "dezordine moleculară"—entropia S definită astfel (Mai precis, o cantitate (-H) care poate fi interpretată ca entropie în stări de neechilibru) are proprietatea că este
Formula lui Planck () [Corola-website/Science/315089_a_316418]
-
corpului negru independent de un model exact atomic (care la vremea aceea nu exista). A doua observație este că - în contradicție cu ipoteza lui Michelson - este puțin probabil ca perioada de oscilație să depindă de viteza "moleculei oscilatoare": după teoria cinetică a gazelor, temperatura este legată de energia cinetică medie a moleculelor; ne putem imagina că, la aceeași temperatură, moleculele a două materiale pot avea valori ale vitezei medii extrem de diferite, dacă masele lor sunt corespunzător diferite; distribuția radiației la echilibru
Formula lui Planck () [Corola-website/Science/315089_a_316418]
-
care la vremea aceea nu exista). A doua observație este că - în contradicție cu ipoteza lui Michelson - este puțin probabil ca perioada de oscilație să depindă de viteza "moleculei oscilatoare": după teoria cinetică a gazelor, temperatura este legată de energia cinetică medie a moleculelor; ne putem imagina că, la aceeași temperatură, moleculele a două materiale pot avea valori ale vitezei medii extrem de diferite, dacă masele lor sunt corespunzător diferite; distribuția radiației la echilibru nu ar putea depinde numai de temperatură (după
Formula lui Planck () [Corola-website/Science/315089_a_316418]
-
funcția I(ν,T). În particular, din Fig.1 vedem că oscilatorii cu frecvențe proprii mari au o energie medie mică. (ii)Pe de altă parte, un oscilator armonic clasic este un sistem cu două grade de libertate, corespunzând energiei cinetice și celei potențiale:după principiul "echipartiției energiei pe grad de libertate" din teoria cinetică energia medie a unui oscilator în echilibru termic este kT ,independent de frecvența sa proprie ν. Atunci putem privi ecuația (4.7) ca determinând pe I
Formula lui Planck () [Corola-website/Science/315089_a_316418]
-
proprii mari au o energie medie mică. (ii)Pe de altă parte, un oscilator armonic clasic este un sistem cu două grade de libertate, corespunzând energiei cinetice și celei potențiale:după principiul "echipartiției energiei pe grad de libertate" din teoria cinetică energia medie a unui oscilator în echilibru termic este kT ,independent de frecvența sa proprie ν. Atunci putem privi ecuația (4.7) ca determinând pe I(ν,T) ca funcție de temperatură: Aceasta este formula lui Rayleigh-Jeans care este evident greșită
Formula lui Planck () [Corola-website/Science/315089_a_316418]
-
N) de moduri în care se pot distribui U/(hν) = P cuante de energie la N oscilatori; un pas care poate părea temerar este că α în (5.9) este chiar constanta lui Boltzmann k, aceeași care apare în teoria cinetică a gazelor. În analogul formulei (2.2) pentru gazele perfecte, constanta k are o valoare precisă: este raportul R/N, unde R este constanta gazelor perfecte (din legea pV=RT) și N este numărul lui Avogadro de molecule într-o
Formula lui Planck () [Corola-website/Science/315089_a_316418]
-
ca entropia să conțină un parametru arbitrar legat de dimensiunea celulei. În anumite calcule - ca de exemplu al energiei medii - dimensiunea celulei dispare si deci ea poate fi socotită oricât de mică.Deasemenea, o privire atentă arată că, în teoria cinetică, entropia corespunde "celei mai probabile" distribuții de probabilitate a vitezelor, și nu numărului tuturor posibilităților. În cazul lui Planck, calculul numărului de posibilități se face fără ambiguitate. Ne așteptăm ca, atunci când h poate fi considerat ca foarte mic, formula lui
Formula lui Planck () [Corola-website/Science/315089_a_316418]
-
cu Chandra, demonstrează că putem folosi găurile negre și sub formă de combustibil. Teorema unicității găurilor negre afirmă că, odată ce devine stabilă, după formare, o gaură neagră este caracterizată de doar trei parametri fizici independenți: masă, sarcina electrică și momentul cinetic. Oricare două găuri negre ce au aceleași valori pentru acești trei parametrii, nu pot fi diferențiate conform mecanicii clasice (non-cuantică). Aceste proprietăți sunt speciale prin aceea că sunt observabile din exterior. De exemplu, o gaură neagră încărcată electric respinge alte
Gaură neagră () [Corola-website/Science/299088_a_300417]
-
sens la fel ca oricare alt obiect. În mod similar, masa totală din interiorul unei sfere ce conține o gaură neagră poate fi aflată folosind corespondentele gravitaționale ale legii lui Gauss, la distanțe mari de gaura neagră. De asemenea momentul cinetic poate fi măsurat de la distanță. Cea mai simplă gaură neagră are masă, dar nu are moment cinetic. Aceste găuri negre sunt adesea denumite găuri negre Schwarzschild, după fizicianul german Karl Schwarzschild, care a descoperit soluția ecuațiilor de câmp ale lui
Gaură neagră () [Corola-website/Science/299088_a_300417]
-
conține o gaură neagră poate fi aflată folosind corespondentele gravitaționale ale legii lui Gauss, la distanțe mari de gaura neagră. De asemenea momentul cinetic poate fi măsurat de la distanță. Cea mai simplă gaură neagră are masă, dar nu are moment cinetic. Aceste găuri negre sunt adesea denumite găuri negre Schwarzschild, după fizicianul german Karl Schwarzschild, care a descoperit soluția ecuațiilor de câmp ale lui Einstein din 1915. Aceasta a fost prima soluție exactă în teoria relativității generale din domeniul ecuațiilor lui
Gaură neagră () [Corola-website/Science/299088_a_300417]
-
mai târziu, în secolul 20. Soluția Reissner-Nordström descrie o gaură neagră cu sarcină electrică, în timp ce Kerr metrice randamentele o gaură neagră prin rotație. Mai mult în general, cunoscut staționare soluție Black Hole, Kerr-Newman metrice, descrie atât de încărcare și, momentului cinetic. Când o stea de aproximativ 20 de ori mai mare ca Soarele își epuizează "combustibilul" intră în colaps, nemaiputând să susțină toate reacțiile ce au loc în interiorul ei. Ea explodează provocând o explozie de proporții numită supernovă. Dar miezul stelei
Gaură neagră () [Corola-website/Science/299088_a_300417]
-
atomi) au "proprietăți intrinsece", independente de mișcarea lor orbitală. Aceste proprietăți, care nu pot fi explicate în cadrul fizicii clasice, ilustrează principii fundamentale ale fizicii cuantice. Scopul imediat al experimentului era testarea ipotezei Bohr-Sommerfeld din teoria cuantică veche, conform căreia momentul cinetic al unui atom se supune unor reguli de cuantificare în spațiu. Rezultatele i-au condus pe Ralph Kronig, George Uhlenbeck și Samuel Goudsmit, în 1925, la formularea ipotezei privitoare la existența unui moment cinetic intrinsec al electronului, care a primit
Experimentul Stern-Gerlach () [Corola-website/Science/329167_a_330496]
-
teoria cuantică veche, conform căreia momentul cinetic al unui atom se supune unor reguli de cuantificare în spațiu. Rezultatele i-au condus pe Ralph Kronig, George Uhlenbeck și Samuel Goudsmit, în 1925, la formularea ipotezei privitoare la existența unui moment cinetic intrinsec al electronului, care a primit numele de spin. În versiunea inițială a experimentului se măsura devierea unui fascicul de atomi de argint într-un câmp magnetic neomogen. El a fost repetat de T.E. Phipps și J.B. Taylor, în 1927
Experimentul Stern-Gerlach () [Corola-website/Science/329167_a_330496]
-
a păturilor electronice interioare. În modelul atomic Bohr-Sommerfeld se face ipoteza că orbitele electronice sunt cuantificate în spațiu: fiecare stare staționară este caracterizată printr-un număr întreg nenegativ formula 2 , numit "număr cuantic orbital" sau "număr cuantic azimutal", iar proiecția momentului cinetic orbital pe direcția perpendiculară pe planul orbitei poate avea doar una din cele formula 3 valori formula 4 Rezultatul unui experiment de tip Stern-Gerlach care testează un electron atomic cu număr cuantic orbital formula 5 ar trebui să fie un număr impar formula 3
Experimentul Stern-Gerlach () [Corola-website/Science/329167_a_330496]
-
cazul atomului de argint în starea fundamentală formula 7, fascicolul ar trebui să rămână nedeviat, pe când experimentul produce două urme, număr par. a dovedit existența unor stări atomice caracterizate printr-un număr cuantic discret, care însă nu sunt legate de momentul cinetic orbital și nu pot fi explicate în cadrul modelului Bohr-Sommerfeld. Câțiva ani mai târziu, Kronig, Uhlenbeck și Goudsmit au formulat ipoteza existenței unui moment cinetic al electronului, datorit rotației sarcinii sale și caracterizat printr-un număr cuantic semiîntreg formula 8. Wolfgang Pauli
Experimentul Stern-Gerlach () [Corola-website/Science/329167_a_330496]
-
unor stări atomice caracterizate printr-un număr cuantic discret, care însă nu sunt legate de momentul cinetic orbital și nu pot fi explicate în cadrul modelului Bohr-Sommerfeld. Câțiva ani mai târziu, Kronig, Uhlenbeck și Goudsmit au formulat ipoteza existenței unui moment cinetic al electronului, datorit rotației sarcinii sale și caracterizat printr-un număr cuantic semiîntreg formula 8. Wolfgang Pauli a arătat că un model al electronului ca sarcină în rotație este incompatibil cu principiile teoriei relativității; însă existența unui "moment cinetic intrinsec" al
Experimentul Stern-Gerlach () [Corola-website/Science/329167_a_330496]
-
unui moment cinetic al electronului, datorit rotației sarcinii sale și caracterizat printr-un număr cuantic semiîntreg formula 8. Wolfgang Pauli a arătat că un model al electronului ca sarcină în rotație este incompatibil cu principiile teoriei relativității; însă existența unui "moment cinetic intrinsec" al electronului, numit pe scurt "spin", presupusă de teorie și confirmată de experiment, a fost acceptată ca postulat al fizicii atomice. Teoria spinului electronic a fost formulată de Pauli.
Experimentul Stern-Gerlach () [Corola-website/Science/329167_a_330496]
-
fost postulată de fizicianul Wolfgang Pauli în 1930. Pauli a postulat în 1930 necesitatea existenței unei particule pentru a reda unele caracteristici observate la dezintegrarea formula 2 a neutronilor, care puneau sub semnul întrebării legile de conservare a energiei și momentului cinetic. La Congresul Solvay din 1933 Pauli a susținut că aceasta se explică prin faptul că nucleul radioactiv ar emite în același timp cu electronul și o altă particulă care, la sugestia lui Enrico Fermi, a obținut numele de "neutrino", ceea ce
Neutrin () [Corola-website/Science/302671_a_304000]
-
energia. Oxigenul rezultat în urma reacțiilor chimice este eliberat în atmosferă prin porii frunzelor. Ciclul Calvin (descoperit de Melvin Calvin) reprezintă o serie de reacții biochimice, care au loc în stroma organismelor fotosintetice, în timpul fazei de întuneric. În cadrul acestui proces, energia cinetică a fotonilor este transformată în energie chimică de legătură. NADPH și ATP sunt compușii care conduc la cel de al doilea stadiu al fotosintezei (sau ciclul Calvin). În acest stadiu, glucoza este produsă folosindu-se dioxid de carbon din atmosferă
Fotosinteză () [Corola-website/Science/303166_a_304495]
-
1690, care este considerat fiind prima aplicație a calcului integral. Poziția punctului material este parametrizat prin lungimea arcului de curbă formula 16, măsurat din punctul cel mai de jos (corespunzător energiei potențiale nule) până în poziția momentană a punctului pe curbă. Energia cinetică a punctului este proporțională cu pătratul vitezei pe traiectorie formula 17, iar energia potențială cu înălțimea formula 18. Pentru ca mișcarea să îndeplinească condiția de tautocronism, este necesar ca lagrangeanul lui să fie cel al unui oscilator armonic simplu, de unde rezultă că înălțimea
Tautocronă () [Corola-website/Science/323736_a_325065]
-
exprimă natură discontinua a materiei și energiei la nivel microscopic. De asemenea, frecvențele radiațiilor atomice depind de natură și structura atomului și au valori discrete, spectrele lor fiind spectre de linii. Condiția de cuantificare se exprimă, de obicei, în legătură cu momentul cinetic formulă 5 al electronului aflat în mișcare circulară pe o orbită în interiorul atomului. unde Condiția rezultă din primul postulat al lui Bohr, considerând ipoteza lui de Broglie referitoare la dualismul undă-particulă. Pentru un atom aflat într-o stare staționara, electronul trebuie
Modelul atomic Bohr () [Corola-website/Science/311588_a_312917]