752 matches
-
În mod tradițional, absența defectelor cristalelor este considerată a fi cea mai importantă calitate a diamantului. Puritatea și perfecțiunea cristalină mare face diamantul transparent, în timp ce duritatea, dispersia optică (luciul) și stabilitatea sa chimică îl transformă într-o piatră prețioasă populară. Conductivitatea termală mare este de asemenea un factor important pentru utilizările tehnice ale sale. Deși dispersia optică mare este o proprietate intrinsecă a tuturor diamantelor, celelalte proprietăți variază depinzând de modul de fabricare al diamantului. Diamantul poate fi un singur și
Diamant sintetic () [Corola-website/Science/328782_a_330111]
-
dislocărilor” rețelei (care sunt defecte din cadrul structurii cristaline) rețeaua fiind supusă unui stres de compresiune, și astfel crește duritatea și rezistența. Spre deosebire de majoritatea izolatorilor electrici, diamantul pur este un bun conductor de căldură datorită legăturilor covalente puternice din interiorul cristalului. Conductivitatea termică a diamantului este cea mai mare dintre a tuturor solidelor cunoscute. Cristalele singure de diamant sintetic îmbogățit în C (99,9%), diamantele pure din punct de vedere izotopic, au cea mai mare conductivitate termică cunoscută a unui material, 30
Diamant sintetic () [Corola-website/Science/328782_a_330111]
-
legăturilor covalente puternice din interiorul cristalului. Conductivitatea termică a diamantului este cea mai mare dintre a tuturor solidelor cunoscute. Cristalele singure de diamant sintetic îmbogățit în C (99,9%), diamantele pure din punct de vedere izotopic, au cea mai mare conductivitate termică cunoscută a unui material, 30 W/cm·K la temperatura camerei, de 7,5 ori mai mare decât a cuprului. Conductivitatea diamantelor naturale este redusă cu 1,1% din cauza izotopului natural de C, care acționează sub forma unei omogenități
Diamant sintetic () [Corola-website/Science/328782_a_330111]
-
diamant sintetic îmbogățit în C (99,9%), diamantele pure din punct de vedere izotopic, au cea mai mare conductivitate termică cunoscută a unui material, 30 W/cm·K la temperatura camerei, de 7,5 ori mai mare decât a cuprului. Conductivitatea diamantelor naturale este redusă cu 1,1% din cauza izotopului natural de C, care acționează sub forma unei omogenități în cadrul rețelei. Conductivitatea termică a diamantului este utilizată de câtre bijutierii și gemologii care ar practica o probă termică electronică pentru separarea
Diamant sintetic () [Corola-website/Science/328782_a_330111]
-
a unui material, 30 W/cm·K la temperatura camerei, de 7,5 ori mai mare decât a cuprului. Conductivitatea diamantelor naturale este redusă cu 1,1% din cauza izotopului natural de C, care acționează sub forma unei omogenități în cadrul rețelei. Conductivitatea termică a diamantului este utilizată de câtre bijutierii și gemologii care ar practica o probă termică electronică pentru separarea diamantelor de imitațiile lor. Aceste probe constau într-o pereche de termistori alimentați electric de către baterii și montați într-un vârf
Diamant sintetic () [Corola-website/Science/328782_a_330111]
-
importante în exploatarea minieră și la tăiere. În ultimii cincisprezece ani, s-au folosit instrumente din metal cu diamante CVD, dar deși încă promit multe, aceste instrumente au fost înlocuite semnificativ cu cele care conțin diamante PCD. Majoritatea materialelor cu conductivitate termală mare, cum ar fi metalele, sunt și conductori electrici. În contrast, diamantul sintetic pur are conductivitate termală mare, dar conductivitatea electrică neglijabilă. Această combinație este inestimabilă pentru domeniul electric în care diamantul este folosit ca radiator pentru diodele cu
Diamant sintetic () [Corola-website/Science/328782_a_330111]
-
cu diamante CVD, dar deși încă promit multe, aceste instrumente au fost înlocuite semnificativ cu cele care conțin diamante PCD. Majoritatea materialelor cu conductivitate termală mare, cum ar fi metalele, sunt și conductori electrici. În contrast, diamantul sintetic pur are conductivitate termală mare, dar conductivitatea electrică neglijabilă. Această combinație este inestimabilă pentru domeniul electric în care diamantul este folosit ca radiator pentru diodele cu laser de putere mare, ca matrice pentru lasere și în tranzistoarele de putere mare. Căldura de disipare
Diamant sintetic () [Corola-website/Science/328782_a_330111]
-
deși încă promit multe, aceste instrumente au fost înlocuite semnificativ cu cele care conțin diamante PCD. Majoritatea materialelor cu conductivitate termală mare, cum ar fi metalele, sunt și conductori electrici. În contrast, diamantul sintetic pur are conductivitate termală mare, dar conductivitatea electrică neglijabilă. Această combinație este inestimabilă pentru domeniul electric în care diamantul este folosit ca radiator pentru diodele cu laser de putere mare, ca matrice pentru lasere și în tranzistoarele de putere mare. Căldura de disipare eficientă prelungește durata de
Diamant sintetic () [Corola-website/Science/328782_a_330111]
-
de aceea au un preț destul de ridicat al radiatoarelor cu diamant. În tehnologia semiconductoarelor, disipatoarele termice din diamante sintetice împiedică siliciul și alte materiale semiconductoare să se supraîncălzească. Diamantul este dur și inert din punct de vedere chimic, și are conductivitate termală mare și coeficientul de expansiune termală mic. Aceste proprietăți fac din diamant un material superior oricărui alt material transparent folosit pentru transmiterea radiațiilor infraroșii și microundelor. Prin urmare, diamantele sintetice au început să înlocuiască seleniura de zinc din laserele
Diamant sintetic () [Corola-website/Science/328782_a_330111]
-
ale cesiului existau încă din anii 1920, când a început să fie folosit în tuburi cu vid, unde a avut două funcții: ca epurator (înlătura excesul de oxigen de după fabricare) și ca strat deasupra catodului de încălzire, pentru a crește conductivitatea electrică a acestuia. Cesiul nu a fost recunoscut ca un metal cu utilizări industriale înainte de anii 1950. Printre aplicațiie cesiului non-radioactiv menționăm aplicațiile în celule fotovoltaice, în tuburi fotomultiplicatoare, în componentele optice ale spectrofotometrelor cu raze infraroșii, în cataliza unor
Cesiu () [Corola-website/Science/304474_a_305803]
-
prin contribuția uriașă a doctorului Steven Jones de la Laboratorul "Jet Propulsion Laboratory" din cadrul agenției spațiale americane. Aerogelul constituie o izolație termică bună, deoarece aproape neutralizează cele trei metode de transfer de căldură: convecția, conducția și radiația. Rezistența la transferul prin conductivitate este dată de componenta majoritar gazoasă. În special aici se evidențiază aerogelul pe bază de siliciu (SilicaGel), deoarece siliciul are de asemenea conducția termică mică. Rezistența la transferul convectiv este dată de faptul că aerul nu circulă în structura materialului
Aerogel () [Corola-website/Science/318802_a_320131]
-
dintr-o joncțiune "pn" prevăzută cu contacte metalice la regiunile "p" și "n" și introdusă într-o capsulă din sticlă, metal, ceramică sau plastic. Regiunea " p" a joncțiunii constituie anodul diodei, iar joncțiunea "n" , catodul. Dioda semiconductoare se caracterizează prin conductivitate unidirecțională, ca și dioda cu vid: Principalele caracteristici ale diodelor, trecute în cataloage, sunt următoarele: VRRM - tensiunea inversă repetitivă maximă, este tensiunea maximă inversă la care poate rezista dioda, atunci când această tensiune este atinsă în mod repetat. Ideal, această valoare
Diodă semiconductoare () [Corola-website/Science/302486_a_303815]
-
dintre granule să fie umplute. Betoanele celulare - se obțin prin provocarea unor reacții chimice urmate de o degajare de gaz în pasta de ciment ori într-un mortar de ciment sau var cu agregat fin ("gazbeton"), betoane cu spumă ("spumbeton"). Conductivitatea termică a betoanelor celulare în stare uscată este mică, urmare a structurii lor microporoase omogene. O mare influență asupra conductivității termice o are umiditatea. Sub influența umiditații conductivitatea termică crește rapid. Rezistența la compresiune este desigur redusă, astfel că structurile
Beton () [Corola-website/Science/304019_a_305348]
-
în pasta de ciment ori într-un mortar de ciment sau var cu agregat fin ("gazbeton"), betoane cu spumă ("spumbeton"). Conductivitatea termică a betoanelor celulare în stare uscată este mică, urmare a structurii lor microporoase omogene. O mare influență asupra conductivității termice o are umiditatea. Sub influența umiditații conductivitatea termică crește rapid. Rezistența la compresiune este desigur redusă, astfel că structurile cu betoane celulare sunt mixte. Betoanele celulare se utilizează pentru executarea de blocuri pentru zidării, fâșii, plăci și panouri pentru
Beton () [Corola-website/Science/304019_a_305348]
-
de ciment sau var cu agregat fin ("gazbeton"), betoane cu spumă ("spumbeton"). Conductivitatea termică a betoanelor celulare în stare uscată este mică, urmare a structurii lor microporoase omogene. O mare influență asupra conductivității termice o are umiditatea. Sub influența umiditații conductivitatea termică crește rapid. Rezistența la compresiune este desigur redusă, astfel că structurile cu betoane celulare sunt mixte. Betoanele celulare se utilizează pentru executarea de blocuri pentru zidării, fâșii, plăci și panouri pentru pereți, elemente armate sub forma de fășii pentru
Beton () [Corola-website/Science/304019_a_305348]
-
de echilibru la temperatură de coexistență, și este atât de puternică încât de obicei apar forme. Atunci când temperatura este schimbată, una din faze creste, formând morfologii diferite în funcție de schimbările de temperatură. Întrucât creșterea este controlată de difuzia căldurii, anizotropia în conductivitatea termică favorizează creșterea în direcții specifice, ceea ce are și ea efect asupra formei finale. Tratarea teoretică microscopică a fazelor fluide poate deveni destul de complicată, din cauza densității crescute de material, în sensul că interacțiunile puternice nu pot fi ignorate. În cazul
Cristal lichid () [Corola-website/Science/314335_a_315664]
-
și nichel, beriliul îmbunătățește o parte din proprietățile fizice ale acestora. Uneltele fabricate din aliajul de cupru-beriliu sunt rezistente, nu creează scântei în contact cu suprafețele din oțel. În cadrul aplicațiilor structurale, combinația cea mai întâlnită de rigiditate flexurală, stabilitate termică, conductivitate termică și densitatea joasă (1.85 ori mai mică decât a apei) fac ca beriliul să fie un material foarte căutat în cadrul componentelor aviatice, torpilelor, navetelor spațiale și a sateliților. Datorită densității sale joase și a masei atomice, beriliul este
Beriliu () [Corola-website/Science/302743_a_304072]
-
masei atomice, beriliul este relativ transparent în contact cu razele X și alte forme de radiație ionizantă; așadar, este materialul cel mai comun ca și ecran de protecție pentru echipamente pentru raze X și componente ale experimentelor cu particule fizice. Conductivitatea sa înaltă, precum și cea a oxidului de beriliu, au condus la utilizarea sa în managementul termal. Utilitatea comercială a beriliului necesită utilizarea unor echipamente potrivite de control al prafului, precum și controale industriale periodice datorită toxicității provocate de acesta; particulele de
Beriliu () [Corola-website/Science/302743_a_304072]
-
la 25 °C, vâscozitatea acidului este de 24,6 mPa·S. În comparație cu acesta, apa are o vâscozitate de 0,89 mPa·s la aceeași temperatură. La fel ca și apa, acidul sulfuric pur este rău conducător de curent electric, iar conductivitatea sa specifică este de 1,044 · 10 S/cm. Motivul pentru disocierea redusă a acidului sulfuric este autoprotoliza. În faza gazoasă, moleculele de acid sulfuric nu sunt legate, ci singure. Unghiul dintre grupele OH este de 101,3° și cel
Acid sulfuric () [Corola-website/Science/307331_a_308660]
-
5. Heliul este cel mai puțin reactiv gaz nobil după neon și, astfel, al doilea cel mai puțin reactiv dintre elemente. Este inert și monoatomic, în toate condițiile standard. Datorită masei molare relativ scăzute a heliului, în faza de gaz, conductivitatea termică, căldura specifică și viteza sunetului sunt toate mai mari decât orice alt gaz, cu excepția hidrogenului. Din motive similare, si, de asemenea, din cauza dimensiunii reduse a atomi de heliu, rata de difuzie a heliului prin solide este de trei ori
Heliu () [Corola-website/Science/302350_a_303679]
-
prin răcire de expansiune. Cel mai multe extraterestre heliu se gaseste într-o stare de plasma, cu proprietăți destul de diferite de cele ale atomului de heliu. În plasma, electronii de heliu nu sunt strâns legați de nucleul sau, rezultând o conductivitate electrică foarte mare, chiar și atunci când gazul este doar parțial ionizat. Particulele încărcate sunt extrem de influențate de câmpurile magnetice și electrice. De exemplu, în vântul solar, împreună cu hidrogenul ionizat, particulele interacționează cu magnetosfera Pământului, care au dat naștere „curenților Birkeland
Heliu () [Corola-website/Science/302350_a_303679]
-
care heliul non-superfluid nu poate trece. Dacă interiorul containerului este încălzit, heliului superfluid se modifică la heliu non-superfluid. În scopul menținerii echilibrului, fracțiunea de heliu superfluid, heliul superfluid se scurge și crește presiunea, cauzând ieșirea lichidului din recipient în fântână. Conductivitatea termică a heliului ÎI este mai mare decât cea a oricărei alte substanțe cunoscute, de un milion de ori decât heliul I și câteva sute de ori decât cea a cuprului. Acest lucru se datorează faptului că în conducția de
Heliu () [Corola-website/Science/302350_a_303679]
-
sau bor cu viteză ridicată a protonilor, dar acest lucru nu este o metodă de productie viabilă economic Heliul este folosit pentru mai multe scopuri, datorită proprietăților sale unice, cum ar fi punctul de fierbere scăzut, densitatea redusă, solubilitatea redusă, conductivitate termică maximă și inerție. Heliul este disponibil în comerț, sub formă lichidă sau gazoasa. În stare lichidă, acesta poate fi livrat în recipiente mici, numite “baloane Dewars”, care dețin până la 1.000 de litri de heliu, sau în containere mari
Heliu () [Corola-website/Science/302350_a_303679]
-
s. Procedura de măsurare este în mod normal, automată și este numită „testul integral al heliului”. Într-un test simplu, produsul este umplut cu heliu și un operator caută manual scurgerile cu un dispozitiv portabil numit sniffer. Pentru inerția și conductivitatea să termică maximă, transparentă neutronica, si pentru că nu formează izotopi radioactivi în condiții de reactoare, heliul este utilizat ca mediu de transfer termic în unele reactoare nucleare răcite cu gaz Heliul este utilizat că un gaz de protecție în procesele
Heliu () [Corola-website/Science/302350_a_303679]
-
proaspătă, are o culoare ușor gălbuie. Face parte, împreună cu aurul, platina, paladiul, iridiul din categoria metalelor prețioase. Este moale, maleabil și ductil, fiind metalul cu cea mai mare conductibilitate electrică și termică. Argintul este metalul care posedă cea mai bună conductivitate electrică și termică. Ca urmare, față de celelalte metale, prezintă cea mai scăzută rezistivitate electrică (la 20 °C de 0,015 mΩmm) și cea mai mare valoare a conductibilității termice (la 20 °C de 4,186 J/cm.s.°C). Dintre
Argint () [Corola-website/Science/297156_a_298485]