1,660 matches
-
pare a fi net sub presiunea atmosferică. Presiunea netă conform ecuației Starling este pozitivă, producând astfel un flux net de limfă de ~ 20 ml/h la om în condiții normale. Lichidul care părăsește capilarele (fig. 82) trece prin interstițiul peretelui alveolar către spațiul perivascular și peribronșic, unde presiunea hidrostatică este și mai mică (vezi mai sus) și unde se găsesc numeroase limfatice, care preiau lichidul în exces. 19.2.2. Relația ventilație-perfuzie Eficiența schimbului de gaze prin bariera alveolo-capilară este condiționată
Fiziologie umană: funcțiile vegetative by Ionela Lăcrămioara Serban, Walther Bild, Dragomir Nicolae Serban () [Corola-publishinghouse/Science/1306_a_2315]
-
și peribronșic, unde presiunea hidrostatică este și mai mică (vezi mai sus) și unde se găsesc numeroase limfatice, care preiau lichidul în exces. 19.2.2. Relația ventilație-perfuzie Eficiența schimbului de gaze prin bariera alveolo-capilară este condiționată de împrospătarea aerului alveolar prin ventilație în cadrul ciclului respirator, dar și de distribuția debitului sanguin pulmonar. Rezistența vasculară pulmonară Legea lui Ohm (debit = cădere de presiune / rezistență la curgere) aplicată la circulația pulmonară evidențiază faptul că rezistența vasculară este foarte mică în acest sector
Fiziologie umană: funcțiile vegetative by Ionela Lăcrămioara Serban, Walther Bild, Dragomir Nicolae Serban () [Corola-publishinghouse/Science/1306_a_2315]
-
creșterea rezistenței vasculare este favorizată de faptul că efectul de tracțiune radială a vaselor extra-alveolare este redus. Odată cu distensia toraco-pulmonară tracțiunea radială mare favorizează o rezistență vasculară redusă, dar la volume mari acest efect este limitat prin aplatizarea vaselor intra-alveolare datorită întinderii pereților alveolari. Mai mult, în cazul unui inspir profund presiunea intra vasculară pulmonară scade prin efectul scăderii presiunii intra-pleurale asupra performanței ventriculului drept. Substanțele care produc contracția mușchiului neted (serotonina, histamina, noradrenalina, etc.) cresc rezistența vasculară pulmonară
Fiziologie umană: funcțiile vegetative by Ionela Lăcrămioara Serban, Walther Bild, Dragomir Nicolae Serban () [Corola-publishinghouse/Science/1306_a_2315]
-
favorizată de faptul că efectul de tracțiune radială a vaselor extra-alveolare este redus. Odată cu distensia toraco-pulmonară tracțiunea radială mare favorizează o rezistență vasculară redusă, dar la volume mari acest efect este limitat prin aplatizarea vaselor intra-alveolare datorită întinderii pereților alveolari. Mai mult, în cazul unui inspir profund presiunea intra vasculară pulmonară scade prin efectul scăderii presiunii intra-pleurale asupra performanței ventriculului drept. Substanțele care produc contracția mușchiului neted (serotonina, histamina, noradrenalina, etc.) cresc rezistența vasculară pulmonară, dar vasoconstricția este eficientă
Fiziologie umană: funcțiile vegetative by Ionela Lăcrămioara Serban, Walther Bild, Dragomir Nicolae Serban () [Corola-publishinghouse/Science/1306_a_2315]
-
o diferență mare de presiune pentru un sistem circulator de joasă presiune cum este circulația pulmonară și efectele asupra debitului regional sunt puternice (fig. 84, după West D. J.). La vârful plămânului (zona 1) presiunea arterială pulmonară este sub presiunea alveolară (capilarele se închid la presiune atmosferică). Dacă acest fenomen ar avea loc capilarele ar fi turtite și nu ar fi perfuzate; această zonă 1 nu există în condiții normale, deoarece presiunea arterială pulmonară e suficientă pentru a ridica sângele până la
Fiziologie umană: funcțiile vegetative by Ionela Lăcrămioara Serban, Walther Bild, Dragomir Nicolae Serban () [Corola-publishinghouse/Science/1306_a_2315]
-
nu ar fi perfuzate; această zonă 1 nu există în condiții normale, deoarece presiunea arterială pulmonară e suficientă pentru a ridica sângele până la vârful plămânului. Ea poate să apară dacă presiunea arterială este redusă (după hemoragii severe) sau dacă presiunea alveolară este crescută (în cursul presiunii pozitive de ventilație). Această zonă ventilată dar neperfuzată este inutilă pentru schimbul gazos; spațiu mort alveolar. In zona 2 presiunea arterială pulmonară este crescută datorită efectului hidrostatic și depășeste presiunea alveolară. Totuși, presiunea venoasă este
Fiziologie umană: funcțiile vegetative by Ionela Lăcrămioara Serban, Walther Bild, Dragomir Nicolae Serban () [Corola-publishinghouse/Science/1306_a_2315]
-
sângele până la vârful plămânului. Ea poate să apară dacă presiunea arterială este redusă (după hemoragii severe) sau dacă presiunea alveolară este crescută (în cursul presiunii pozitive de ventilație). Această zonă ventilată dar neperfuzată este inutilă pentru schimbul gazos; spațiu mort alveolar. In zona 2 presiunea arterială pulmonară este crescută datorită efectului hidrostatic și depășeste presiunea alveolară. Totuși, presiunea venoasă este încă foarte scăzută și este mai mică decât presiunea alveolară; aceasta conduce la caracteristici importante presiune-debit. In aceste condiții, debitul sanguin
Fiziologie umană: funcțiile vegetative by Ionela Lăcrămioara Serban, Walther Bild, Dragomir Nicolae Serban () [Corola-publishinghouse/Science/1306_a_2315]
-
severe) sau dacă presiunea alveolară este crescută (în cursul presiunii pozitive de ventilație). Această zonă ventilată dar neperfuzată este inutilă pentru schimbul gazos; spațiu mort alveolar. In zona 2 presiunea arterială pulmonară este crescută datorită efectului hidrostatic și depășeste presiunea alveolară. Totuși, presiunea venoasă este încă foarte scăzută și este mai mică decât presiunea alveolară; aceasta conduce la caracteristici importante presiune-debit. In aceste condiții, debitul sanguin este determinat de diferența dintre presiuea arterială și cea alveolară (nu obișnuita diferență arterio venoasă
Fiziologie umană: funcțiile vegetative by Ionela Lăcrămioara Serban, Walther Bild, Dragomir Nicolae Serban () [Corola-publishinghouse/Science/1306_a_2315]
-
zonă ventilată dar neperfuzată este inutilă pentru schimbul gazos; spațiu mort alveolar. In zona 2 presiunea arterială pulmonară este crescută datorită efectului hidrostatic și depășeste presiunea alveolară. Totuși, presiunea venoasă este încă foarte scăzută și este mai mică decât presiunea alveolară; aceasta conduce la caracteristici importante presiune-debit. In aceste condiții, debitul sanguin este determinat de diferența dintre presiuea arterială și cea alveolară (nu obișnuita diferență arterio venoasă). Intr-adevăr, presiunea venoasă nu influențează debitul decât dacă depășește presiunea alveolară. In zona
Fiziologie umană: funcțiile vegetative by Ionela Lăcrămioara Serban, Walther Bild, Dragomir Nicolae Serban () [Corola-publishinghouse/Science/1306_a_2315]
-
decât presiunea alveolară; aceasta conduce la caracteristici importante presiune-debit. In aceste condiții, debitul sanguin este determinat de diferența dintre presiuea arterială și cea alveolară (nu obișnuita diferență arterio venoasă). Intr-adevăr, presiunea venoasă nu influențează debitul decât dacă depășește presiunea alveolară. In zona 3 presiunea venoasă depășește presiunea alveolară și debitul este determinat în mod normal prin diferența presională arterio venoasă. Creșterea debitului sanguin în această regiune pulmonară este produsă în principal de distensia capilară. Presiunea din interiorul capilarelor (situată între
Fiziologie umană: funcțiile vegetative by Ionela Lăcrămioara Serban, Walther Bild, Dragomir Nicolae Serban () [Corola-publishinghouse/Science/1306_a_2315]
-
presiune-debit. In aceste condiții, debitul sanguin este determinat de diferența dintre presiuea arterială și cea alveolară (nu obișnuita diferență arterio venoasă). Intr-adevăr, presiunea venoasă nu influențează debitul decât dacă depășește presiunea alveolară. In zona 3 presiunea venoasă depășește presiunea alveolară și debitul este determinat în mod normal prin diferența presională arterio venoasă. Creșterea debitului sanguin în această regiune pulmonară este produsă în principal de distensia capilară. Presiunea din interiorul capilarelor (situată între cea arterială și venoasă) crește în partea inferioară
Fiziologie umană: funcțiile vegetative by Ionela Lăcrămioara Serban, Walther Bild, Dragomir Nicolae Serban () [Corola-publishinghouse/Science/1306_a_2315]
-
prin diferența presională arterio venoasă. Creșterea debitului sanguin în această regiune pulmonară este produsă în principal de distensia capilară. Presiunea din interiorul capilarelor (situată între cea arterială și venoasă) crește în partea inferioară a acestei zone, cu toate că presiunea din afară (alveolară) rămâne constantă. Recrutarea de vase în prealabil închise poate de asemeni juca un rol important în creșterea debitului sanguin în partea inferioară a acestei zone. La volum pulmonar redus, rezistența vaselor extra-alveolare devine importantă datorită reducerii efectului de tracțiune radială
Fiziologie umană: funcțiile vegetative by Ionela Lăcrămioara Serban, Walther Bild, Dragomir Nicolae Serban () [Corola-publishinghouse/Science/1306_a_2315]
-
cu baza plămânului, unde parenchimul este cel mai expandat. Vasoconstricția pulmonară hipoxică Am văzut că factorii pasivi au o influență importantă asupra rezistenței vasculare și asupra distribuției debitului în vasele pulmonare în condiții normale. Când pO2 este scăzută în aerul alveolar are loc un răspuns activ extrem de important, ce constă în contracția mușchiului neted din peretele arteriolelor mici din regiunea hipoxică. Mecanismul precis al acestui răspuns nu este pe deplin elucidat, dar s-a constatat că are loc și în plămânul
Fiziologie umană: funcțiile vegetative by Ionela Lăcrămioara Serban, Walther Bild, Dragomir Nicolae Serban () [Corola-publishinghouse/Science/1306_a_2315]
-
dacă mediul în care se găsesc este hipoxic, deci explicația poate fi acțiunea locală a hipoxiei asupra arterei însăși. Se pare că celulele din țesuturile perivasculare eliberează unele substanțe vasoconstrictoare ca răspuns la hipoxie. Interesant este că pO2 din aerul alveolar și nu din sângele arterial pulmonar, este determinantul principal al acestui răspuns, în condițiile în care spațiul de difuzie este restrâns, arterele pulmonare mici fiind foarte aproape de alveole. Curba stimul - răspuns a acestei constricții este neliniară; la valori apropiate de
Fiziologie umană: funcțiile vegetative by Ionela Lăcrămioara Serban, Walther Bild, Dragomir Nicolae Serban () [Corola-publishinghouse/Science/1306_a_2315]
-
prima respirație, rezistența vasculară scade dramatic datorită relaxării mușchiului neted vascular și astfel, debitul sanguin pulmonar crește enorm. S-au mai descris și alte răspunsuri active ale circulației pulmonare. pH-ul scăzut al plasmei produce vasoconstricție; în special când hipoxia alveolară este prezentă. De asemenea, sistemul nervos autonom exercită un control slab. 19.3. Funcția antitoxică a plămânului Aparatul respirator realizează o apărare generală împotriva agresiunilor aerogene (particule solide de diverse dimensiuni), o apărare antimicrobiană (detectarea și atacul asupra agențilo microbieni
Fiziologie umană: funcțiile vegetative by Ionela Lăcrămioara Serban, Walther Bild, Dragomir Nicolae Serban () [Corola-publishinghouse/Science/1306_a_2315]
-
mucoasa traheo bronșică, iar particulele sub 3 µm depășesc bariera traheo-bronșică și ajung în alveole. Particulele ce se depun pe peretele traheo bronșic sunt eliminate prin sistemul de transport mucociliar asigurat de epiteliul căilor aeriene. Particulele ajunse până la nivel bronhiolo alveolar sunt epurate de sistemul format din surfactantul pulmonar și macrofagele alveolare. Surfactantul este antrenat spre exterior împreună cu particulele depuse la nivel alveolar, dar cea mai mare parte din particulele depuse la acest nivel sunt captate de macrofage, cu rol de
Fiziologie umană: funcțiile vegetative by Ionela Lăcrămioara Serban, Walther Bild, Dragomir Nicolae Serban () [Corola-publishinghouse/Science/1306_a_2315]
-
și ajung în alveole. Particulele ce se depun pe peretele traheo bronșic sunt eliminate prin sistemul de transport mucociliar asigurat de epiteliul căilor aeriene. Particulele ajunse până la nivel bronhiolo alveolar sunt epurate de sistemul format din surfactantul pulmonar și macrofagele alveolare. Surfactantul este antrenat spre exterior împreună cu particulele depuse la nivel alveolar, dar cea mai mare parte din particulele depuse la acest nivel sunt captate de macrofage, cu rol de epurare a particulelor prin fagocitoză. Ca mijloace de apărare suplimentare, la
Fiziologie umană: funcțiile vegetative by Ionela Lăcrămioara Serban, Walther Bild, Dragomir Nicolae Serban () [Corola-publishinghouse/Science/1306_a_2315]
-
bronșic sunt eliminate prin sistemul de transport mucociliar asigurat de epiteliul căilor aeriene. Particulele ajunse până la nivel bronhiolo alveolar sunt epurate de sistemul format din surfactantul pulmonar și macrofagele alveolare. Surfactantul este antrenat spre exterior împreună cu particulele depuse la nivel alveolar, dar cea mai mare parte din particulele depuse la acest nivel sunt captate de macrofage, cu rol de epurare a particulelor prin fagocitoză. Ca mijloace de apărare suplimentare, la nivelul secrețiilor bronșice și în surfactant există compuși cu acțiune nespecifică
Fiziologie umană: funcțiile vegetative by Ionela Lăcrămioara Serban, Walther Bild, Dragomir Nicolae Serban () [Corola-publishinghouse/Science/1306_a_2315]
-
asigurate prin circulația sanguină. Sângele prezintă mecanisme biochimice care cresc mult capacitatea de încărcare cu O2 și CO2 față de nivelul foarte redus al concentrațiilor sanguine de gaze respiratorii dizolvate fizic în sânge (corespunzător presiunilor parțiale existente la nivel tisular și alveolar și coeficienților mici de solubilitate în apă). 20.1. Transportul sanguin al oxigenului Oxigenul molecular este preluat de sânge din aerul alveolar și este pus la dispoziția tuturor celulelor din organism. El se află în sânge sub două forme: dizolvat
Fiziologie umană: funcțiile vegetative by Ionela Lăcrămioara Serban, Walther Bild, Dragomir Nicolae Serban () [Corola-publishinghouse/Science/1306_a_2315]
-
al concentrațiilor sanguine de gaze respiratorii dizolvate fizic în sânge (corespunzător presiunilor parțiale existente la nivel tisular și alveolar și coeficienților mici de solubilitate în apă). 20.1. Transportul sanguin al oxigenului Oxigenul molecular este preluat de sânge din aerul alveolar și este pus la dispoziția tuturor celulelor din organism. El se află în sânge sub două forme: dizolvat și combinat reversibil cu hemoglobina. Transportul de O2 sub formă dizolvată se realizează conform legii lui Henry (cantitatea dizolvată este proporțională cu
Fiziologie umană: funcțiile vegetative by Ionela Lăcrămioara Serban, Walther Bild, Dragomir Nicolae Serban () [Corola-publishinghouse/Science/1306_a_2315]
-
Forma curbei de disociere a Hb are câteva avantaje fiziologice. Aproape de porțiunea superioară a curbei se produce difuzia O2 prin bariera sânge-gaz din plămân și astfel încărcarea O2 pe molecula de Hb. In plus, scăderi mici ale pO2 din aerul alveolar nu pot afecta puternic conținutul în oxigen al sângelui arterial și cantitatea de oxigen disponibilă la țesuturi. Porțiunea inferioară a curbei are o pantă mare și arată că țesuturile pot extrage cantități mari de O2 pentru fiecare mică scădere a
Fiziologie umană: funcțiile vegetative by Ionela Lăcrămioara Serban, Walther Bild, Dragomir Nicolae Serban () [Corola-publishinghouse/Science/1306_a_2315]
-
1. Capilarele și vasele limfatice 135 16.2. Formarea limfei 135 16.3. Factori determinanți ai circulației limfatice 136 16.4. Rolul circulației limfatice 137 FIZIOLOGIA RESPIRATIEI I. L. Serban, D. N. Serban 17. Introducere în fiziologia respirației 138 18. Ventilația alveolară 138 18.1. Date de anatomie funcțională a aparatului respirator 138 18.2. Funcțiile căilor respiratorii 140 18.3. Forțe care acționează asupra plămânului 144 18.4. Ciclul respirator 147 18.4.1. Inspirul 148 18.4.2. Expirul 149
Fiziologie umană: funcțiile vegetative by Ionela Lăcrămioara Serban, Walther Bild, Dragomir Nicolae Serban () [Corola-publishinghouse/Science/1306_a_2283]
-
Forțe care acționează asupra plămânului 144 18.4. Ciclul respirator 147 18.4.1. Inspirul 148 18.4.2. Expirul 149 18.4.3. Volume și debite respiratorii 150 18.4.4. Lucrul mecanic respirator 152 18.5. Efectul ventilator alveolar al aerului vehiculat 152 18.6. Controlul ventilației 155 18.6.1. Chemoreceptorii centrali 155 18.6.2. Chemoreceptorii periferici 156 18.6.3. Receptorii pulmonari 157 18.6.4. Receptorii de iritație din căile aeriene 158 18.6.5
Fiziologie umană: funcțiile vegetative by Ionela Lăcrămioara Serban, Walther Bild, Dragomir Nicolae Serban () [Corola-publishinghouse/Science/1306_a_2283]
-
controlul ventilației 159 18.6.6. Centrii nervoși 159 18.6.7. Efectorii 162 18.6.8. Controlul integrativ al mișcarilor respiratorii 162 19. Hematoza pulmonară și alte funcții ale plămânului 167 19.1. Schimbul de gaze respiratorii la nivel alveolar 167 19.2. Circulația pulmonară 168 19.2.1. Regimul presional și echilibrul Starling 169 19.2.2. Relația ventilație-perfuzie 172 19.3. Funcția antitoxică a plămânului 176 19.4. Funcțiile metabolice ale plămânului 177 20. Transportul sanguin al gazelor
Fiziologie umană: funcțiile vegetative by Ionela Lăcrămioara Serban, Walther Bild, Dragomir Nicolae Serban () [Corola-publishinghouse/Science/1306_a_2283]
-
și alte animale superioare preiau oxigen din aer și eliberează bioxid de carbon în vederea satisfacerii nevoilor metabolice ale țesuturilor, fenomen care se numește schimb de gaze și care reprezintă esența fiziologiei respiratorii. Se descriu următoarele procese implicate în schimbul gazos: ventilația alveolară, procesul prin care aerul alveolar este permanent împrospătat cu aer de proveniență atmosferică, permițând aducerea unor noi cantități de oxigen și îndepărtarea bioxidului de carbon produs de organism; difuzia gazelor respiratorii (oxigen și bioxid de carbon) prin peretele alveolelor pulmonare
Fiziologie umană: funcțiile vegetative by Ionela Lăcrămioara Serban, Walther Bild, Dragomir Nicolae Serban () [Corola-publishinghouse/Science/1306_a_2283]