697 matches
-
carbonizate la 1000șC. Mecanismele de adsorbție specifice prin care coloranții sunt reținuți pe acest tip de adsorbenți nu sunt încă elucidate, deoarece adsorbția este un proces complicat care depinde de mai multe tipuri de interacțiuni, atât electrostatice, cât și ne-electrostatice (hidrofobice). Deși există multe studii în termeni de proprietăți de sorbție și cinetice, în continuare sunt necesare investigații suplimentare pentru elucidarea mecanismelor de adsorbție. 3.1.3. Factori experimentali care influențează adsorbția coloranților pe cărbune activ În cazul interacțiunii cărbune
Metode neconvenţionale de sorbţie a unor coloranţi by Viorica DULMAN, Simona Maria CUCU-MAN, Rodica MUREŞAN () [Corola-publishinghouse/Science/100974_a_102266]
-
îndepărtarea selectivă a unor grupe funcționale. Pentru un domeniu larg de pH, majoritatea poluanților aromatici sunt prezenți în forma lor moleculară. În acest caz, interacțiunile π-π dispersive constituie mecanismul predominant de adsorbție. În condițiile în care adsorbații sunt disociați, interacțiunile electrostatice între aceștia și grupele funcționale încărcate joacă un rol dominant în adsorbție. O cunoaștere completă a chimiei suprafeței cărbunelui activ permite prepararea de adsorbenți cu caracteristici adecvate pentru aplicații specifice. Cărbunele activ neconvențional prezintă capacitate de adsorbție ridicată pentru anumiți
Metode neconvenţionale de sorbţie a unor coloranţi by Viorica DULMAN, Simona Maria CUCU-MAN, Rodica MUREŞAN () [Corola-publishinghouse/Science/100974_a_102266]
-
sorbent, are valoarea 5,92. La pH < pHpzc, deoarece H+ intră în competiție cu colorantul, suprafața reține mai mulți H+, cu reducerea numărului de molecule legate la suprafața sorbentului. La pH > pHpzc, suprafața adsorbentului este încărcată negativ, iar creșterea interacțiunii electrostatice între speciile pozitive de adsorbat și particulele de adsorbent conduce la creșterea capacității de adsorbție a colorantului. Același comportament a fost observat și de alți autori (Hameed și El-Khaiary, 2008a; Karagöz și al., 2008). În Figura 3.9 este prezentată
Metode neconvenţionale de sorbţie a unor coloranţi by Viorica DULMAN, Simona Maria CUCU-MAN, Rodica MUREŞAN () [Corola-publishinghouse/Science/100974_a_102266]
-
favorizează aglomerarea acestuia, conducând la apariția dimerilor cu masă moleculară mai mare, incapabili să intre în pori. Ghanadzadeh și al. (2002) au studiat aglomerarea Rodaminei B și au ajuns la concluzia că este mai intensă la forma amfionică, datorită atracției electrostatice dintre grupele carboxil și xantenă ale monomerilor. Efectul pH-ului inițial asupra reținerii Procion Red MX 3B cu material carbonizat neactivat (C-PW) și activat termic (AC-PW) obținut din coajă de fruct de pin brazilian a fost studiat în domeniul
Metode neconvenţionale de sorbţie a unor coloranţi by Viorica DULMAN, Simona Maria CUCU-MAN, Rodica MUREŞAN () [Corola-publishinghouse/Science/100974_a_102266]
-
Aceste mecanisme sunt, în general, complicate deoarece implică prezența unor diferite interacțiuni. În plus, un domeniu larg de structuri chimice, pH, concentrația de săruri și prezența liganzilor le complică și mai mult. Tipurile de interacțiuni includ: schimbul ionic, complexare, interacțiuni electrostatice, interacțiuni acido-bazice, legătura de hidrogen, interacțiuni hidrofobe, adsorbție fizică, precipitare. O analiză a datelor din literatură indică faptul că este posibil ca cel puțin unele din aceste mecanisme să acționeze într-o anumită măsură simultan, în funcție de compoziția chimică a sorbentului
Metode neconvenţionale de sorbţie a unor coloranţi by Viorica DULMAN, Simona Maria CUCU-MAN, Rodica MUREŞAN () [Corola-publishinghouse/Science/100974_a_102266]
-
2 și se intensifică cu creșterea pH-ului de la 2 la 10. Procentul maxim de îndepărtare se constată la pH6 pentru rumegușul funcționalizat și la pH8 pentru cel nemodificat. pHpzc determinat pentru rumegușul funcționalizat este 3,2. Datorită absenței interacțiunii electrostatice, îndepărtarea colorantului cu rumeguș funcționalizat este mai puțin eficientă la pH inițial sub valoarea 3,2. La valori de pH mai mari decât 3,2, creșterea încărcării negative a suprafeței rumegușului funcționalizat conduce la un procent mai mare de îndepărtare
Metode neconvenţionale de sorbţie a unor coloranţi by Viorica DULMAN, Simona Maria CUCU-MAN, Rodica MUREŞAN () [Corola-publishinghouse/Science/100974_a_102266]
-
devine complet solubil la pH aproximativ 5. Deoarece valoarea pKa a grupei amino a restului glucozaminic este 6,3, chitosanul este puternic încărcat pozitiv în mediu acid. Tratarea chitosanului cu acizi produce deci grupări aminice protonate și aceasta facilitează interacțiunile electrostatice între lanțurile polimerice și coloranții anionici încărcați negativ. Solubilitatea dependentă de pH a chitosanului constituie un instrument convenabil pentru a îmbunătăți performanța sa, deși solubilitatea este un parametru foarte dificil de controlat. De fapt, solubilitatea depinde de concentrație și tipul
Metode neconvenţionale de sorbţie a unor coloranţi by Viorica DULMAN, Simona Maria CUCU-MAN, Rodica MUREŞAN () [Corola-publishinghouse/Science/100974_a_102266]
-
fi adsorbiți de granulele de chitosan este deseori atribuită încărcării suprafeței, care depinde de pH. Adsorbția colorantului are loc prin atracție electrostatică de către grupările aminice protonate și mulți dintre autori concluzionează că influența pH-ului confirmă rolul esențial al interacțiunilor electrostatice între chitosan și colorant. Astfel, unii autori (Chatterjee și al., 2005) indică faptul că chitosanul are suprafața încărcată pozitiv la pH sub 6,5 (pHpzc) și scăderea pH-ului crește încărcarea pozitivă a suprafeței, făcând astfel procesul de adsorbție sensibil
Metode neconvenţionale de sorbţie a unor coloranţi by Viorica DULMAN, Simona Maria CUCU-MAN, Rodica MUREŞAN () [Corola-publishinghouse/Science/100974_a_102266]
-
4. La pH acid, încărcarea suprafeței adsorbentului crește, în principal datorită protonării grupei amino a chitosanului. Roșu Congo este un colorant acid și conține grupe sulfonice. Adsorbția mai accentuată a colorantului la pH mai mic se datorează probabil creșterii atracției electrostatice între moleculele de colorant încărcate negativ și grupările aminice pozitive. La pH 6,4, la care suprafața granulelor de gel de chitosan este neutră, adsorbția colorantului poate fi atribuită doar forțelor fizice. Pe baza unor modele s-a constatat că
Metode neconvenţionale de sorbţie a unor coloranţi by Viorica DULMAN, Simona Maria CUCU-MAN, Rodica MUREŞAN () [Corola-publishinghouse/Science/100974_a_102266]
-
unui număr de molecule de apă. Adsorbția (poli)anionilor hidratați în rețeaua polimerului hidrofil perturbă inevitabil ordinea moleculeor de apă în mediul imediat învecinat și le eliberează în lichidul extern. Cu alte cuvinte, moleculele adsorbite sunt probabil atrase datorită interacțiunilor electrostatice la mare distanță între grupele încărcate opus. În cursul formării legăturilor ionice între colorant și polimer contraionul trebuie să câștige un grad mai mare de libertate și crește entropia. Valorile ΔH arată că adsorbția coloranților pe derivații de chitosan poate
Metode neconvenţionale de sorbţie a unor coloranţi by Viorica DULMAN, Simona Maria CUCU-MAN, Rodica MUREŞAN () [Corola-publishinghouse/Science/100974_a_102266]
-
ionilor H+, grupele aminice ale chitosanului se protonează și în soluția apoasă a colorantului anionic dizolvat grupele sulfonice (în cazul coloranților acizi și reactivi) disociază și sunt transformate în anioni ai colorantului. Procesul de adsorbție are loc apoi datorită atracției electrostatice între acești doi contraioni. În general, cu creșterea concentrației inițiale a colorantului, pH-ul la echilibru scade. Aceasta confirmă schimbul ionic, deoarece cu cât sunt adsorbite mai multe molecule de colorant pe material, cu atât se eliberează un număr mai
Metode neconvenţionale de sorbţie a unor coloranţi by Viorica DULMAN, Simona Maria CUCU-MAN, Rodica MUREŞAN () [Corola-publishinghouse/Science/100974_a_102266]
-
care fulgi, granule și materiale în amestec, constatându-se o corelație foarte bună între grupele funcționale prezente pe suprafața adsorbenților și capacitatea acestora de adsorbție a moleculelor de colorant. Deoarece chitosanul este solubil în apă la pH acid, proprietățile sale electrostatice sunt dependente de pH, acesta jucând un rol important în procesele de adsorbție. Autorii au concluzionat că materialele preparate au o selectivitate mare în reținerea colorantului prin schimb ionic. Alți autori (Sakkayawong și al., 2005) au arătat că mecanismul de
Metode neconvenţionale de sorbţie a unor coloranţi by Viorica DULMAN, Simona Maria CUCU-MAN, Rodica MUREŞAN () [Corola-publishinghouse/Science/100974_a_102266]
-
specifice implică faptul că adsorbția fizică la suprafața granulelor nu este semnificativă. Crini și al. (2008a; 2008b) au studiat adsorbția unor coloranți cationici (Basic Blue 9, Basic Blue 3) pe chitosan grefat și au confirmat mecanismul de chimiosorbție prin interacțiuni electrostatice. Mecanismul de adsorbție depinde în principal de interacțiunea dintre suprafața chitosanului grefat și speciile adsorbite. Autorii au adăugat că mecanismul are loc și prin adsorbția fizică la suprafață și legături de hidrogen datorită rețelei polimerului, concluzionând că mecanismul este un
Metode neconvenţionale de sorbţie a unor coloranţi by Viorica DULMAN, Simona Maria CUCU-MAN, Rodica MUREŞAN () [Corola-publishinghouse/Science/100974_a_102266]
-
de aglomerare este influențat de mărimea particulelor de colorant și capacitatea lor de a difuza în rețeaua internă poroasă. Nanoparticulele se aglomerează rapid după interacțiunea cu moleculele de colorant, ceea ce sugerează înlocuirea legăturilor de hidrogen între lanțurile polimerice prin interacțiuni electrostatice între colorant și aceste lanțuri (Hu și al., 2006a). Așadar, se poate considera și un mecanism de aglomerare. Creșterea concentrației colorantului influențează mecanismul de aglomerare (Gibbs și al., 2004). Mărimea agregatului colorantului poate influența difuzia acestuia, în special în cazul
Metode neconvenţionale de sorbţie a unor coloranţi by Viorica DULMAN, Simona Maria CUCU-MAN, Rodica MUREŞAN () [Corola-publishinghouse/Science/100974_a_102266]
-
HCl) în primul ciclu la 83,6% (NaOH) și 75,2% (HCl) în ultimul ciclu (Kamari și al., 2009). Procentul de desorbție este destul de mare în toate cazurile, fapt care arată că în procesul de adsorbție sunt probabil implicate interacțiunile electrostatice. Granulele de chitosan-EGDE conduc la rezultate de desorbție mai bune la concentrații mai mari de NaOH, datorită rezistenței mecanice și chimice mai mari în mediu bazic. Procentul de Eozină Y desorbită de pe nanoparticule de chitosan și viteza de desorbție cresc
Metode neconvenţionale de sorbţie a unor coloranţi by Viorica DULMAN, Simona Maria CUCU-MAN, Rodica MUREŞAN () [Corola-publishinghouse/Science/100974_a_102266]
-
de argilă încărcată negativ într-o soluție conținând cationi, aceștia se deplasează către suprafața particulelor prin mai multe mecanisme: - se poate forma un complex neutru prin legarea unui cation monovalent la un situs negativ monovalent de la suprafața adsorbentului, prin forțe electrostatice; - se pot forma complecși încărcați prin legarea a doi cationi organici monovalenți la un situs monovalent; - în cazul situsurilor neutre la suprafața externă, se poate forma un complex încărcat monovalent prin legarea unui cation organic la un situs neutru. Pentru
Metode neconvenţionale de sorbţie a unor coloranţi by Viorica DULMAN, Simona Maria CUCU-MAN, Rodica MUREŞAN () [Corola-publishinghouse/Science/100974_a_102266]
-
de schimb ionic, deci capacitatea de sorbție poate varia puternic cu pH-ul. Unii autori (Al-Ghouti și al., 2003) au arătat că mecanismul de adsorbție a coloranților pe diatomit se datorează adsorbției fizice (dependentă de mărimea particulelor) și prezenței interacțiunilor electrostatice (dependente de pH). Materialele argiloase prezintă capacități mari de îndepărtare a coloranților (Tabelul 3.7). Astfel, Espantaleon și al. (2003) au obținut o capacitate de adsorbție a Sella Fast Brown H pe bentonit de 350,5 mg g-1. Datorită suprafeței
Metode neconvenţionale de sorbţie a unor coloranţi by Viorica DULMAN, Simona Maria CUCU-MAN, Rodica MUREŞAN () [Corola-publishinghouse/Science/100974_a_102266]
-
12, ceea ce înseamnă că încărcarea suprafeței argilei rămâne negativă într-un domeniu larg de pH. Când soluția are pH bazic, suprafața încărcată negativ a argilei favorizează adsorbția colorantului. Cantitatea redusă de colorant adsorbit la pH scăzut se poate atribui respingerii electrostatice dintre suprafața încărcată pozitiv și molecula de colorant încărcată pozitiv la pH sub 9,5. Adsorbția se conformează modelului Langmuir iar capacitatea de adsorbție monostrat este 54 mg g-1 și echilibrul se atinge în aproximativ 20 minute. Parametrii termodinamici indică
Metode neconvenţionale de sorbţie a unor coloranţi by Viorica DULMAN, Simona Maria CUCU-MAN, Rodica MUREŞAN () [Corola-publishinghouse/Science/100974_a_102266]
-
consorțiile complexe de microorganisme conțin în principal archaebacterii (capabile de metanogeneză) (Caner și al., 2009). Agregatele de microorganisme din flocoane sunt constituite din microcolonii de ordinul de la 5 la 15 μm. Aceste flocoane bacteriene se formează pe baza unor interacțiuni electrostatice de tip celule-EPS-cationi, sau prin interacțiuni fizice. Flocoanele prezintă o structură puțin densă și eterogenă (densitate cuprinsă între 1,02 și 1,06) a cărei coeziune este asigurată prin legături între ioni și exopolimeri. Se menționeză că acestea sunt legături
Metode neconvenţionale de sorbţie a unor coloranţi by Viorica DULMAN, Simona Maria CUCU-MAN, Rodica MUREŞAN () [Corola-publishinghouse/Science/100974_a_102266]
-
eterogenă (densitate cuprinsă între 1,02 și 1,06) a cărei coeziune este asigurată prin legături între ioni și exopolimeri. Se menționeză că acestea sunt legături de hidrogen și legături van der Waals (Massé, 2004). Există în egală măsură interacțiuni electrostatice (de respingere sau de atracție), hidrofob-hidrofob, hidrofil-hidrofil (Figura 4.9). Wu și al. (2006) au utilizat pentru biosorbția colorantului Acid Red GR un volum de nămol anoxic (cu densitatea inițială a granulelor de 39,2 kg m-3). Nămolul provenit
Metode neconvenţionale de sorbţie a unor coloranţi by Viorica DULMAN, Simona Maria CUCU-MAN, Rodica MUREŞAN () [Corola-publishinghouse/Science/100974_a_102266]
-
chimică a biomasei de Corynebacterium glutamicum prin reticulare cu polietilenimina (PEI) Capacitatea de biosorbție a Corynebacterium glutamicum se mărește prin reticularea cu polietilenimina (PEI) (Mao și al., 2009a), deoarece grupele amino (primare și secundare) din pereții celulari ai bacteriei interacționează electrostatic cu anionii colorantului reactiv. Domeniul de pH acid favorizează biosorbția colorantului Reactive Red 4, datorită protonării grupelor amino. Desorbția a avut loc la pH 9, cu regenerarea biomasei și reutilizarea în mai multe cicluri. Practic, 10 g biomasă uscată de
Metode neconvenţionale de sorbţie a unor coloranţi by Viorica DULMAN, Simona Maria CUCU-MAN, Rodica MUREŞAN () [Corola-publishinghouse/Science/100974_a_102266]
-
îndepărtarea coloranților acizi din soluții apoase este arătat în Figura 4.41. Grupele de acid carboxilic, carbonil și amino sunt protonate la pH mai mic decât 7, încât numărul de situsuri încărcate pozitiv crește. Biosorbția coloranților acizi crește datorită atracției electrostatice între suprafața încărcată pozitiv (-COOH2+; -NH3+) și grupele negative sulfonice (-SO3-) ale moleculei de colorant în mediu acid. Procesul de biosorbție a colorantului Reactive Orange 16 (Won și al., 2009a) cu biomasa reziduală de C. glutamicum evaluată ca biosorbent eficient
Metode neconvenţionale de sorbţie a unor coloranţi by Viorica DULMAN, Simona Maria CUCU-MAN, Rodica MUREŞAN () [Corola-publishinghouse/Science/100974_a_102266]
-
constantă. În final, deși pH-ul s-a modificat de la 12 la 7, colorantul sorbit în condiții alcaline nu a fost desorbit, asemănător cazului 4. Sub valoarea pH-ului 7, reținerea a crescut considerabil, datorită unei sorbții adiționale datorată atracției electrostatice între grupele aminice protonate ale biomasei și moleculele de colorant încărcate negativ. În concluzie, fenomenul de sorbție care are loc la pH bazic s-a datorat unui alt tip de mecanism, diferit de cel bazat pe interacțiunea electrostatică biosorbent-colorant. De
Metode neconvenţionale de sorbţie a unor coloranţi by Viorica DULMAN, Simona Maria CUCU-MAN, Rodica MUREŞAN () [Corola-publishinghouse/Science/100974_a_102266]
-
mari de pH. Este cunoscut că punctul izoelectric al biomasei de alge este situat în jurul valorii de pH 3,0. Astfel, suprafața biosorbentului poate acumula mai mulți ioni negativi peste acest pH, conducând la intensificarea reținerii cationului MG+ datorită forței electrostatice de atracție (Tsai și Chen, 2010). Rezultatele obținute la sorbția și desorbția colorantului Direct Brown în soluții organice și/sau anorganice au indicat un proces parțial de sorbție chimic și de schimb ionic. Cel mai mare procent de sorbție (80
Metode neconvenţionale de sorbţie a unor coloranţi by Viorica DULMAN, Simona Maria CUCU-MAN, Rodica MUREŞAN () [Corola-publishinghouse/Science/100974_a_102266]
-
prezenței C-C/C-H, -O-C-O- și respectiv grupei carboxilice (Venkata Mohan și al., 2008). Capacitatea de sorbție mare obținută cu alga Scenedesmus quadricauda imobilizată în perle de gel de alginat, sau liberă la pH 2, poate fi datorată atracției electrostatice între anionii de colorant (Remazol Brilliant Blue R, Reactive Blue 19) și suprafața celulelor încărcată pozitiv. S-au evidențiat anterior grupele funcționale din algă (Figura 4.34) prin compararea spectrelor FTIR înainte și după tratamentul termic (Ergene și al., 2009
Metode neconvenţionale de sorbţie a unor coloranţi by Viorica DULMAN, Simona Maria CUCU-MAN, Rodica MUREŞAN () [Corola-publishinghouse/Science/100974_a_102266]