4,099 matches
-
Tom se întâlnește cu Vincent, un prieten care încerca să găsească o metodă de a călători în timp. De la acesta află că experimentul s-a dovedit un succes parțial - se pot trimite lucruri în timp, dar doar sub formă de electroni. Tom își dă seama că, de fapt, chipul și mișcările lui Alis au fost înregistrate de particulele trimise în trecut și supraimprimate pe peliculele vechi în locul vedetelor cu care semăna fata, deoarece aparatura computerizată nu era programată să înlăture un
Remake (roman) () [Corola-website/Science/335506_a_336835]
-
în univers pur și simplu nu funcționează în modul în care experiențele noastre cotidiene ne fac să credem ci într-un mod cu totul diferit. La nivelul microcosmosului, surprizele sunt și mai multe. Un obiect precum un foton sau un electron nu au o locație precisă sau o traiectorie detectabilă între punctul în care au fost emise și punctul în care au fost detectate. Punctele în care astfel de particule pot fi detectate nu sunt cele la care ne-am aștepta
Introducere în mecanica cuantică () [Corola-website/Science/314087_a_315416]
-
atunci când a presupus că lumina e formată din corpusculi. Experimente ulterioare au arătat că un model bazat pe pachete de energie sau un model cuantic este necesar pentru a explica unele fenomene. Atunci când lumina lovește un conductor electric face ca electronii să se deplaseze din pozițiile lor originale. Fenomenul poate fi explicat doar presupunând că lumina transportă energie doar în pachete bine definite. Într-un dispozitiv fotoelectric precum senzorul de lumină dintr-o cameră foto, lumina care cade pe detectorul metalic
Introducere în mecanica cuantică () [Corola-website/Science/314087_a_315416]
-
deplaseze din pozițiile lor originale. Fenomenul poate fi explicat doar presupunând că lumina transportă energie doar în pachete bine definite. Într-un dispozitiv fotoelectric precum senzorul de lumină dintr-o cameră foto, lumina care cade pe detectorul metalic face ca electronii să se deplaseze. Cu cât intensitatea razelor de lumină de aceași frecvență crește cu atât mai mulți electroni se deplasează, însă ei nu se vor deplasa mai rapid. Prin contrast, o frecvență crescută a razelor de lumină va face ca
Introducere în mecanica cuantică () [Corola-website/Science/314087_a_315416]
-
bine definite. Într-un dispozitiv fotoelectric precum senzorul de lumină dintr-o cameră foto, lumina care cade pe detectorul metalic face ca electronii să se deplaseze. Cu cât intensitatea razelor de lumină de aceași frecvență crește cu atât mai mulți electroni se deplasează, însă ei nu se vor deplasa mai rapid. Prin contrast, o frecvență crescută a razelor de lumină va face ca electronii să se miște mai repede. De aceea, intensitatea luminii controlează curentul electric, iar frecvența luminii controlează tensiunea
Introducere în mecanica cuantică () [Corola-website/Science/314087_a_315416]
-
să se deplaseze. Cu cât intensitatea razelor de lumină de aceași frecvență crește cu atât mai mulți electroni se deplasează, însă ei nu se vor deplasa mai rapid. Prin contrast, o frecvență crescută a razelor de lumină va face ca electronii să se miște mai repede. De aceea, intensitatea luminii controlează curentul electric, iar frecvența luminii controlează tensiunea electrică. Aceste observații creează o contradicție când sunt comparate cu undele sonore și undele oceanice la care doar cunoașterea intensității este suficientă pentru
Introducere în mecanica cuantică () [Corola-website/Science/314087_a_315416]
-
pătrat). Următorul pas as fost descoperirea Efectului Zeeman, numit astfel după Pieter Zeeman (1865-1943). Explicația fizică a efectului Zeeman a fost dată de Hendrik Antoon Lorentz (1853-1928). Lorentz a emis ipoteza că lumina emisă de hidrogen este produsă de vibrația electronilor. A reușit să obțină informații despre ceea ce se întâmplă într-un atom deoarece electronii aflati în mișcare creează un câmp magnetic și astfel pot fi influențați de către un câmp magnetic extern într-o manieră asemănătoare modului în care un magnet
Introducere în mecanica cuantică () [Corola-website/Science/314087_a_315416]
-
Explicația fizică a efectului Zeeman a fost dată de Hendrik Antoon Lorentz (1853-1928). Lorentz a emis ipoteza că lumina emisă de hidrogen este produsă de vibrația electronilor. A reușit să obțină informații despre ceea ce se întâmplă într-un atom deoarece electronii aflati în mișcare creează un câmp magnetic și astfel pot fi influențați de către un câmp magnetic extern într-o manieră asemănătoare modului în care un magnet metalic va atrage sau va respinge un alt magnet. Efectul Zeeman poate fi interpretat
Introducere în mecanica cuantică () [Corola-website/Science/314087_a_315416]
-
de către un câmp magnetic extern într-o manieră asemănătoare modului în care un magnet metalic va atrage sau va respinge un alt magnet. Efectul Zeeman poate fi interpretat ca o dovadă a faptului că undele de lumină sunt produse de către electronii care vibrează pe orbitele lor, însă fizica clasică nu poate explica de ce electronii nu se prăbușesc de pe orbitele lor în nucleul atomului și nici de ce orbitele electronilor pot fi doar cele conforme seriilor de frecvențe care derivă din formula lui
Introducere în mecanica cuantică () [Corola-website/Science/314087_a_315416]
-
magnet metalic va atrage sau va respinge un alt magnet. Efectul Zeeman poate fi interpretat ca o dovadă a faptului că undele de lumină sunt produse de către electronii care vibrează pe orbitele lor, însă fizica clasică nu poate explica de ce electronii nu se prăbușesc de pe orbitele lor în nucleul atomului și nici de ce orbitele electronilor pot fi doar cele conforme seriilor de frecvențe care derivă din formula lui Balmer și care pot fi observate în linia spectrală. Cu alte cuvinte, a
Introducere în mecanica cuantică () [Corola-website/Science/314087_a_315416]
-
interpretat ca o dovadă a faptului că undele de lumină sunt produse de către electronii care vibrează pe orbitele lor, însă fizica clasică nu poate explica de ce electronii nu se prăbușesc de pe orbitele lor în nucleul atomului și nici de ce orbitele electronilor pot fi doar cele conforme seriilor de frecvențe care derivă din formula lui Balmer și care pot fi observate în linia spectrală. Cu alte cuvinte, a apărut întrebarea: de ce electronii nu produc un spectru continuu? Mecanica cuantică s-a dezvoltat
Introducere în mecanica cuantică () [Corola-website/Science/314087_a_315416]
-
de pe orbitele lor în nucleul atomului și nici de ce orbitele electronilor pot fi doar cele conforme seriilor de frecvențe care derivă din formula lui Balmer și care pot fi observate în linia spectrală. Cu alte cuvinte, a apărut întrebarea: de ce electronii nu produc un spectru continuu? Mecanica cuantică s-a dezvoltat din studiul undelor electromagnetice prin intermediul spectroscopiei care include lumina vizibilă care se descompune în culorile curcubeului, dar de asemenea și alte unde incluzând unde cu energie mai mare precum lumina
Introducere în mecanica cuantică () [Corola-website/Science/314087_a_315416]
-
Planck prezintă energia pe care o undă de lumină o transportă ca o funcție a frecvenței sale. Un pas mai departe în dezvoltarea acestui concept a apărut în lucrările lui Bohr. El a folosit un model "planetar" pentru a descrie electronul și nu înțelegea de ce factorul 2π era esențial în formula sa determinată experimental. Mai târziu, de Broglie a postulat că electronii au frecvențe, la fel cum au fotonii și că frecvența unui electron trebuie să fie conformă condițiilor unei unde
Introducere în mecanica cuantică () [Corola-website/Science/314087_a_315416]
-
în dezvoltarea acestui concept a apărut în lucrările lui Bohr. El a folosit un model "planetar" pentru a descrie electronul și nu înțelegea de ce factorul 2π era esențial în formula sa determinată experimental. Mai târziu, de Broglie a postulat că electronii au frecvențe, la fel cum au fotonii și că frecvența unui electron trebuie să fie conformă condițiilor unei unde statice care poate exista pe anumite orbite. Altfel spus, începutul unui ciclu al undei dintr-un anume punct al circumferinței unui
Introducere în mecanica cuantică () [Corola-website/Science/314087_a_315416]
-
folosit un model "planetar" pentru a descrie electronul și nu înțelegea de ce factorul 2π era esențial în formula sa determinată experimental. Mai târziu, de Broglie a postulat că electronii au frecvențe, la fel cum au fotonii și că frecvența unui electron trebuie să fie conformă condițiilor unei unde statice care poate exista pe anumite orbite. Altfel spus, începutul unui ciclu al undei dintr-un anume punct al circumferinței unui cerc (de vreme ce asta reprezintă o orbită) trebuie să coincidă cu sfârșitul unui
Introducere în mecanica cuantică () [Corola-website/Science/314087_a_315416]
-
alt ciclu. Nu poate exista nici un interval gol, nici o parte a circumferinței care să nu participe la vibrație și nu pot exista suprapuneri ale ciclurilor. Deci circumferința unei orbite, "C", trebuie să fie egală cu lungimea de undă, λ, a electronului înmulțită cu un număr întreg ("n" = 1, 2, 3...). Cunoscând lungimea circumferinței se pot calcula lungimile de undă care se potrivesc acelei orbite și cunoscând raza, "r", a orbitei se poate calcula circumferința. Toate acestea sunt exprimate într-o formă
Introducere în mecanica cuantică () [Corola-website/Science/314087_a_315416]
-
ca de exemplu în calcularea orbitelor în modelul atomic al lui Bohr, "h"/2π a fost obținut în mod natural la exprimarea momentului unghiular al orbitelor. O altă expresie pentru relația dintre energie și lungimea de undă este dată în electroni volți pentru energie și în angstromi pentru lungimea de undă: "E" (eV) = 12.400/λ(Å) — aparent "h" nu este deloc implicat, dar asta doar datorită faptului că a fost folosit un alt sistem de unități de măsură și acum
Introducere în mecanica cuantică () [Corola-website/Science/314087_a_315416]
-
Å) — aparent "h" nu este deloc implicat, dar asta doar datorită faptului că a fost folosit un alt sistem de unități de măsură și acum, numeric, factorul de conversie folosit este 12.400. În 1897 a fost descoperită particula numită electron. Ca o interpretare a Experimentului Geiger-Marsden fizicienii au descoperit că materia este, în cea mai mare parte, spațiu gol. De îndată ce acest lucru a devenit clar, s-a emis ipoteza că entități încărcate cu sarcină negativă numite electroni înconjoară un nucleu
Introducere în mecanica cuantică () [Corola-website/Science/314087_a_315416]
-
descoperită particula numită electron. Ca o interpretare a Experimentului Geiger-Marsden fizicienii au descoperit că materia este, în cea mai mare parte, spațiu gol. De îndată ce acest lucru a devenit clar, s-a emis ipoteza că entități încărcate cu sarcină negativă numite electroni înconjoară un nucleu atomic încărcat pozitiv. La început toți oamenii de știință credeau că atomul trebuie să fie asemănător unui sistem solar în miniatură. Însă această analogie simplă ducea la concluzia că electronul ar trebui să se prăbușească în nucleul
Introducere în mecanica cuantică () [Corola-website/Science/314087_a_315416]
-
că entități încărcate cu sarcină negativă numite electroni înconjoară un nucleu atomic încărcat pozitiv. La început toți oamenii de știință credeau că atomul trebuie să fie asemănător unui sistem solar în miniatură. Însă această analogie simplă ducea la concluzia că electronul ar trebui să se prăbușească în nucleul atomic în aproximativ o sutime de microsecundă. Cea mai importantă întrebare a începutului secolului 20 a fost "De ce electronii mențin în mod normal o orbită stabilă în jurul nucleului ?" În 1913, Niels Bohr a
Introducere în mecanica cuantică () [Corola-website/Science/314087_a_315416]
-
asemănător unui sistem solar în miniatură. Însă această analogie simplă ducea la concluzia că electronul ar trebui să se prăbușească în nucleul atomic în aproximativ o sutime de microsecundă. Cea mai importantă întrebare a începutului secolului 20 a fost "De ce electronii mențin în mod normal o orbită stabilă în jurul nucleului ?" În 1913, Niels Bohr a rezolvat această problemă importantă aplicând ideea unei plaje discrete (discontinue) pentru orbitele posibile ale electronilor. Acest model a devenit mai apoi cunoscut sub numele de Modelul
Introducere în mecanica cuantică () [Corola-website/Science/314087_a_315416]
-
Cea mai importantă întrebare a începutului secolului 20 a fost "De ce electronii mențin în mod normal o orbită stabilă în jurul nucleului ?" În 1913, Niels Bohr a rezolvat această problemă importantă aplicând ideea unei plaje discrete (discontinue) pentru orbitele posibile ale electronilor. Acest model a devenit mai apoi cunoscut sub numele de Modelul atomic al lui Bohr. În esență Bohr a emis ipoteza că electronii pot ocupa doar anumite orbite în jurul unui nucleu. Existența acestor orbite poate fi dedusă analizând linia spectrală
Introducere în mecanica cuantică () [Corola-website/Science/314087_a_315416]
-
Niels Bohr a rezolvat această problemă importantă aplicând ideea unei plaje discrete (discontinue) pentru orbitele posibile ale electronilor. Acest model a devenit mai apoi cunoscut sub numele de Modelul atomic al lui Bohr. În esență Bohr a emis ipoteza că electronii pot ocupa doar anumite orbite în jurul unui nucleu. Existența acestor orbite poate fi dedusă analizând linia spectrală produsă de un atom. Bohr a explicat existența orbitelor pe care electronii le pot ocupa corelând momentul unghiular al electronilor din fiecare orbită
Introducere în mecanica cuantică () [Corola-website/Science/314087_a_315416]
-
atomic al lui Bohr. În esență Bohr a emis ipoteza că electronii pot ocupa doar anumite orbite în jurul unui nucleu. Existența acestor orbite poate fi dedusă analizând linia spectrală produsă de un atom. Bohr a explicat existența orbitelor pe care electronii le pot ocupa corelând momentul unghiular al electronilor din fiecare orbită "permisă" cu valuarea lui h, constanta lui Planck. El a spus că un electron aflat în cea mai joasă orbită are un moment unghiular egal cu h/2π. Fiecare
Introducere în mecanica cuantică () [Corola-website/Science/314087_a_315416]
-
emis ipoteza că electronii pot ocupa doar anumite orbite în jurul unui nucleu. Existența acestor orbite poate fi dedusă analizând linia spectrală produsă de un atom. Bohr a explicat existența orbitelor pe care electronii le pot ocupa corelând momentul unghiular al electronilor din fiecare orbită "permisă" cu valuarea lui h, constanta lui Planck. El a spus că un electron aflat în cea mai joasă orbită are un moment unghiular egal cu h/2π. Fiecare orbită superioară celei de bază va conține acei
Introducere în mecanica cuantică () [Corola-website/Science/314087_a_315416]