5,288 matches
-
sferei. Suma unghiurilor unui triunghi sferic este întotdeauna mai mare decât suma unghiurilor unui triunghi plan care are exact 180°. Mărimea E prin care suma unghiurilor depășește 180° se numește exces sferic: în care α, β și γ sunt unghiurile triunghiului sferic. Teorema lui Girard, numită astfel după matematicianul francez Albert Girard (descoperită mai devreme de matematicianul englez Thomas Harriot, dar nepublicată), demonstrează că acest surplus determină aria suprafeței oricărui triunghi sferic: în care "R" este raza sferei. Din acestă formulă
Trigonometrie sferică () [Corola-website/Science/320035_a_321364]
-
exces sferic: în care α, β și γ sunt unghiurile triunghiului sferic. Teorema lui Girard, numită astfel după matematicianul francez Albert Girard (descoperită mai devreme de matematicianul englez Thomas Harriot, dar nepublicată), demonstrează că acest surplus determină aria suprafeței oricărui triunghi sferic: în care "R" este raza sferei. Din acestă formulă și din formula ariei unei sfere rezultă că suma unghiurilor unui triunghi sferic este: Un rezultat analog se obține pentru un triunghi hiperbolic, în care excesul sferic este înlocuit cu
Trigonometrie sferică () [Corola-website/Science/320035_a_321364]
-
descoperită mai devreme de matematicianul englez Thomas Harriot, dar nepublicată), demonstrează că acest surplus determină aria suprafeței oricărui triunghi sferic: în care "R" este raza sferei. Din acestă formulă și din formula ariei unei sfere rezultă că suma unghiurilor unui triunghi sferic este: Un rezultat analog se obține pentru un triunghi hiperbolic, în care excesul sferic este înlocuit cu defectul hiperbolic, amândouă fiind cazuri speciale ale teoremei Gauss-Bonnet. Rezultă de aici că nu există triunghiuri similare netriviale (triunghiuri cu unghiuri egale
Trigonometrie sferică () [Corola-website/Science/320035_a_321364]
-
demonstrează că acest surplus determină aria suprafeței oricărui triunghi sferic: în care "R" este raza sferei. Din acestă formulă și din formula ariei unei sfere rezultă că suma unghiurilor unui triunghi sferic este: Un rezultat analog se obține pentru un triunghi hiperbolic, în care excesul sferic este înlocuit cu defectul hiperbolic, amândouă fiind cazuri speciale ale teoremei Gauss-Bonnet. Rezultă de aici că nu există triunghiuri similare netriviale (triunghiuri cu unghiuri egale dar cu lungimi diferite ale laturilor și arie diferită) pe
Trigonometrie sferică () [Corola-website/Science/320035_a_321364]
-
sfere rezultă că suma unghiurilor unui triunghi sferic este: Un rezultat analog se obține pentru un triunghi hiperbolic, în care excesul sferic este înlocuit cu defectul hiperbolic, amândouă fiind cazuri speciale ale teoremei Gauss-Bonnet. Rezultă de aici că nu există triunghiuri similare netriviale (triunghiuri cu unghiuri egale dar cu lungimi diferite ale laturilor și arie diferită) pe o sferă. În cazul special în care sfera are raza 1, aria este egală cu excesul sferic: A = E. Se poate folosi chiar formula
Trigonometrie sferică () [Corola-website/Science/320035_a_321364]
-
suma unghiurilor unui triunghi sferic este: Un rezultat analog se obține pentru un triunghi hiperbolic, în care excesul sferic este înlocuit cu defectul hiperbolic, amândouă fiind cazuri speciale ale teoremei Gauss-Bonnet. Rezultă de aici că nu există triunghiuri similare netriviale (triunghiuri cu unghiuri egale dar cu lungimi diferite ale laturilor și arie diferită) pe o sferă. În cazul special în care sfera are raza 1, aria este egală cu excesul sferic: A = E. Se poate folosi chiar formula lui Girard pentru
Trigonometrie sferică () [Corola-website/Science/320035_a_321364]
-
special în care sfera are raza 1, aria este egală cu excesul sferic: A = E. Se poate folosi chiar formula lui Girard pentru a se obține teorema Gauss-Bonnet discretă. Pentru a rezolva problemele geometrice pe o sferă, împărțim figura în "triunghiuri sferice drepte", adică unul din unghiurile triunghiului are 90°, deoarece putem folosi pentagonul lui Napier. Pentagonul lui Napier (de asemenea cunoscut ca cercul lui Napier) este un mnemonic care ajută la găsirea tuturor relațiilor dintre unghiurile unui triunghi sferic dreptunghic
Trigonometrie sferică () [Corola-website/Science/320035_a_321364]
-
aria este egală cu excesul sferic: A = E. Se poate folosi chiar formula lui Girard pentru a se obține teorema Gauss-Bonnet discretă. Pentru a rezolva problemele geometrice pe o sferă, împărțim figura în "triunghiuri sferice drepte", adică unul din unghiurile triunghiului are 90°, deoarece putem folosi pentagonul lui Napier. Pentagonul lui Napier (de asemenea cunoscut ca cercul lui Napier) este un mnemonic care ajută la găsirea tuturor relațiilor dintre unghiurile unui triunghi sferic dreptunghic. Se scriu cele șase unghiuri ale triunghiului
Trigonometrie sferică () [Corola-website/Science/320035_a_321364]
-
figura în "triunghiuri sferice drepte", adică unul din unghiurile triunghiului are 90°, deoarece putem folosi pentagonul lui Napier. Pentagonul lui Napier (de asemenea cunoscut ca cercul lui Napier) este un mnemonic care ajută la găsirea tuturor relațiilor dintre unghiurile unui triunghi sferic dreptunghic. Se scriu cele șase unghiuri ale triunghiului sferic (trei unghiuri și trei arce) sub forma unui cerc, în ordinea apariției lor în triunghi (unghi, latura, unghi și tot așa până se închide cercul). Apoi încrucișăm unghiul de 90
Trigonometrie sferică () [Corola-website/Science/320035_a_321364]
-
triunghiului are 90°, deoarece putem folosi pentagonul lui Napier. Pentagonul lui Napier (de asemenea cunoscut ca cercul lui Napier) este un mnemonic care ajută la găsirea tuturor relațiilor dintre unghiurile unui triunghi sferic dreptunghic. Se scriu cele șase unghiuri ale triunghiului sferic (trei unghiuri și trei arce) sub forma unui cerc, în ordinea apariției lor în triunghi (unghi, latura, unghi și tot așa până se închide cercul). Apoi încrucișăm unghiul de 90° și înlocuim arcul neadiacent cu complementul său, adică, înlocuim
Trigonometrie sferică () [Corola-website/Science/320035_a_321364]
-
cercul lui Napier) este un mnemonic care ajută la găsirea tuturor relațiilor dintre unghiurile unui triunghi sferic dreptunghic. Se scriu cele șase unghiuri ale triunghiului sferic (trei unghiuri și trei arce) sub forma unui cerc, în ordinea apariției lor în triunghi (unghi, latura, unghi și tot așa până se închide cercul). Apoi încrucișăm unghiul de 90° și înlocuim arcul neadiacent cu complementul său, adică, înlocuim să spunem pe "B" prin 90° − "B". Cele cinci numere pe care le avem acum formează
Trigonometrie sferică () [Corola-website/Science/320035_a_321364]
-
unghiuri. Atunci Regula lui Napier arată că "sinusul" unghiului din mijloc este egal cu: De exemplu, începând cu unghiul formula 5, putem obține formula: Folosind identitățile pentru unghiurile complementare, avem: Vezi și formula Haversin care dă lungimile laturilor și unghiurile unui triunghi sferic într-o formă numeric stabilă pentru navigație. Triunghiurile sferice satisfac teorema cosinusului Această identitate poate fi obținută considerând triunghiurile formate din liniile tangente ale triunghiului sferic care subîntind unghiul A, triunghiuri în care se folosește teorema cosinusului pentru triunghiuri
Trigonometrie sferică () [Corola-website/Science/320035_a_321364]
-
din mijloc este egal cu: De exemplu, începând cu unghiul formula 5, putem obține formula: Folosind identitățile pentru unghiurile complementare, avem: Vezi și formula Haversin care dă lungimile laturilor și unghiurile unui triunghi sferic într-o formă numeric stabilă pentru navigație. Triunghiurile sferice satisfac teorema cosinusului Această identitate poate fi obținută considerând triunghiurile formate din liniile tangente ale triunghiului sferic care subîntind unghiul A, triunghiuri în care se folosește teorema cosinusului pentru triunghiuri plane. Mai mult, acestă identitate se reduce la teorema
Trigonometrie sferică () [Corola-website/Science/320035_a_321364]
-
putem obține formula: Folosind identitățile pentru unghiurile complementare, avem: Vezi și formula Haversin care dă lungimile laturilor și unghiurile unui triunghi sferic într-o formă numeric stabilă pentru navigație. Triunghiurile sferice satisfac teorema cosinusului Această identitate poate fi obținută considerând triunghiurile formate din liniile tangente ale triunghiului sferic care subîntind unghiul A, triunghiuri în care se folosește teorema cosinusului pentru triunghiuri plane. Mai mult, acestă identitate se reduce la teorema din plan pentru triunghiuri de arie mică. De asemenea triunghiurile sferice
Trigonometrie sferică () [Corola-website/Science/320035_a_321364]
-
unghiurile complementare, avem: Vezi și formula Haversin care dă lungimile laturilor și unghiurile unui triunghi sferic într-o formă numeric stabilă pentru navigație. Triunghiurile sferice satisfac teorema cosinusului Această identitate poate fi obținută considerând triunghiurile formate din liniile tangente ale triunghiului sferic care subîntind unghiul A, triunghiuri în care se folosește teorema cosinusului pentru triunghiuri plane. Mai mult, acestă identitate se reduce la teorema din plan pentru triunghiuri de arie mică. De asemenea triunghiurile sferice satisfac o teoremă analoagă teoremei sinusului
Trigonometrie sferică () [Corola-website/Science/320035_a_321364]
-
Haversin care dă lungimile laturilor și unghiurile unui triunghi sferic într-o formă numeric stabilă pentru navigație. Triunghiurile sferice satisfac teorema cosinusului Această identitate poate fi obținută considerând triunghiurile formate din liniile tangente ale triunghiului sferic care subîntind unghiul A, triunghiuri în care se folosește teorema cosinusului pentru triunghiuri plane. Mai mult, acestă identitate se reduce la teorema din plan pentru triunghiuri de arie mică. De asemenea triunghiurile sferice satisfac o teoremă analoagă teoremei sinusului din geometria plană: O listă detaliată
Trigonometrie sferică () [Corola-website/Science/320035_a_321364]
-
triunghi sferic într-o formă numeric stabilă pentru navigație. Triunghiurile sferice satisfac teorema cosinusului Această identitate poate fi obținută considerând triunghiurile formate din liniile tangente ale triunghiului sferic care subîntind unghiul A, triunghiuri în care se folosește teorema cosinusului pentru triunghiuri plane. Mai mult, acestă identitate se reduce la teorema din plan pentru triunghiuri de arie mică. De asemenea triunghiurile sferice satisfac o teoremă analoagă teoremei sinusului din geometria plană: O listă detaliată a identităților este disponibilă aici În final, aceste
Trigonometrie sferică () [Corola-website/Science/320035_a_321364]
-
cosinusului Această identitate poate fi obținută considerând triunghiurile formate din liniile tangente ale triunghiului sferic care subîntind unghiul A, triunghiuri în care se folosește teorema cosinusului pentru triunghiuri plane. Mai mult, acestă identitate se reduce la teorema din plan pentru triunghiuri de arie mică. De asemenea triunghiurile sferice satisfac o teoremă analoagă teoremei sinusului din geometria plană: O listă detaliată a identităților este disponibilă aici În final, aceste triunghiuri satisfac și formula laturilor pe jumătate.
Trigonometrie sferică () [Corola-website/Science/320035_a_321364]
-
considerând triunghiurile formate din liniile tangente ale triunghiului sferic care subîntind unghiul A, triunghiuri în care se folosește teorema cosinusului pentru triunghiuri plane. Mai mult, acestă identitate se reduce la teorema din plan pentru triunghiuri de arie mică. De asemenea triunghiurile sferice satisfac o teoremă analoagă teoremei sinusului din geometria plană: O listă detaliată a identităților este disponibilă aici În final, aceste triunghiuri satisfac și formula laturilor pe jumătate.
Trigonometrie sferică () [Corola-website/Science/320035_a_321364]
-
plane. Mai mult, acestă identitate se reduce la teorema din plan pentru triunghiuri de arie mică. De asemenea triunghiurile sferice satisfac o teoremă analoagă teoremei sinusului din geometria plană: O listă detaliată a identităților este disponibilă aici În final, aceste triunghiuri satisfac și formula laturilor pe jumătate.
Trigonometrie sferică () [Corola-website/Science/320035_a_321364]
-
În matematică, identitațile trigonometrice sunt egalități care implică funcții trigonometrice și sunt adevărate pentru fiecare unică valoare a variabilei care apare. Geometric, acestea sunt identități care implică funcții de unul sau mai multe unghiuri. Acestea sunt distincte de identitățile triunghiurilor, care implică atât unghiurile cât și laturile triunghiului. Acest articol acoperă doar identitățile trigonometrice. Aceste identități sunt utilizate acolo unde apar expresii care implică funcții trigonometrice, care trebuie să fie simplificate. O aplicație importantă este aceea a integralelor care nu
Identități trigonometrice () [Corola-website/Science/320154_a_321483]
-
implică funcții trigonometrice și sunt adevărate pentru fiecare unică valoare a variabilei care apare. Geometric, acestea sunt identități care implică funcții de unul sau mai multe unghiuri. Acestea sunt distincte de identitățile triunghiurilor, care implică atât unghiurile cât și laturile triunghiului. Acest articol acoperă doar identitățile trigonometrice. Aceste identități sunt utilizate acolo unde apar expresii care implică funcții trigonometrice, care trebuie să fie simplificate. O aplicație importantă este aceea a integralelor care nu conțin funcții trigonometrice, dar care implică folosirea acestor
Identități trigonometrice () [Corola-website/Science/320154_a_321483]
-
fi deduși din formula lui Moivre, formula lui Euler sau binomul lui Newton). Indentitățile produsului prin sumă pot fi demonstrate prin aplicarea formulelor de adunare și scădere a unghiurilor. Dacă "x", "y" și "z" sunt cele trei unghiuri ale oricărui triunghi, sau cu alte cuvinte: Dacă oricare unghi "x", "y" sau "z" este un unghi de 90°, ambele părți ale egalului sunt infinite, dar nu sunt nici +∞ nici -∞. Pentru scopul actual are sens doar adăugarea punctului de la infinit de pe axa reală
Identități trigonometrice () [Corola-website/Science/320154_a_321483]
-
x") care acoperă întreaga circumferință a cercului. Această identitate este convenabilă uneori când ne gândim la gudermannian, care leagă funcțiile trigonometrice de cele hiperbolice fără a recurge la numerele complexe. Dacă "x", "y" și "z" sunt trei unghiuri ale oricărui triunghi, adică "x" + "y" + "z" = π, atunci Dacă "ƒ"("x") este o funcție rațională liniară și similar atunci Mai concis, dacă pentru toți "α" avem "ƒ" ceea ce numim funcța "ƒ" de mai sus, atunci: Dacă "x" este panta unei drepte, atunci
Identități trigonometrice () [Corola-website/Science/320154_a_321483]
-
celor doi, îndragostindu-se de Elenă. Serialul a avut premiera pe postul de televiziune CW în septembrie 2009, până în prezent ajungând la sezonul 8. . Acțiunea are loc în Mystic Falls, (Virginia), un oraș fictiv, bântuit de forțe supranaturale. Acțiunea gravitează în jurul triunghiului amoros format de Elenă, Ștefan și Damon, toți având un trecut misterios. În plan paralel se desfasoara acțiunea ce vizează istoria orașului, în care este implicată Elenă, ea fiind dublura lui Katherine, care vrea să se răzbune pe locuitorii orașului
Jurnalele vampirilor () [Corola-website/Science/321105_a_322434]