77 matches
-
, numit și Principiul Pauli este un principiu din mecanica cuantică, formulat de Wolfgang Pauli în 1925. Acesta afirmă că doi fermioni identici nu pot ocupa aceeași stare cuantică "simultan". O formulare mai riguroasă a acestui principiu este că, pentru doi fermioni identici, funcția de undă totală este antisimetrică. Pentru electronii dintr-un singur atom, înseamnă că doi electroni nu pot avea
Principiul de excluziune () [Corola-website/Science/311301_a_312630]
-
numit și Principiul Pauli este un principiu din mecanica cuantică, formulat de Wolfgang Pauli în 1925. Acesta afirmă că doi fermioni identici nu pot ocupa aceeași stare cuantică "simultan". O formulare mai riguroasă a acestui principiu este că, pentru doi fermioni identici, funcția de undă totală este antisimetrică. Pentru electronii dintr-un singur atom, înseamnă că doi electroni nu pot avea aceleași patru numere cuantice, adică dacă "n", "l", și "m" sunt aceleași, atunci "m" trebuie să fie diferit, astfel încât electronii
Principiul de excluziune () [Corola-website/Science/311301_a_312630]
-
loc cuantic - pentru că funcția de undă a unui astfel de sistem ar trebui să fie egală cu opusul său - și singura funcție de undă care satisface această condiție este funcția de undă nulă. Particulele cu funcții de undă antisimetrice se numesc fermioni—și respectă principiul de excluziune Pauli. În afară de electron, proton și neutron, în această categorie se mai înscriu neutrinii și quarkurile (din care sunt formați protonii și neutronii), precum și unii atomi cum ar fi cel de heliu-3. Toți fermionii au spin
Principiul de excluziune () [Corola-website/Science/311301_a_312630]
-
se numesc fermioni—și respectă principiul de excluziune Pauli. În afară de electron, proton și neutron, în această categorie se mai înscriu neutrinii și quarkurile (din care sunt formați protonii și neutronii), precum și unii atomi cum ar fi cel de heliu-3. Toți fermionii au spin semiîntreg, adică ei au un impuls unghiular intrinsec a cărui valoare este formula 1 înmulțită cu un număr semiîntreg (1/2, 3/2, 5/2, etc.). În teoria mecanicii cuantice, fermionii sunt descriși ca "stări antisimetrice". Particulele cu spin
Principiul de excluziune () [Corola-website/Science/311301_a_312630]
-
atomi cum ar fi cel de heliu-3. Toți fermionii au spin semiîntreg, adică ei au un impuls unghiular intrinsec a cărui valoare este formula 1 înmulțită cu un număr semiîntreg (1/2, 3/2, 5/2, etc.). În teoria mecanicii cuantice, fermionii sunt descriși ca "stări antisimetrice". Particulele cu spin întreg au o funcție de undă simetrică și se numesc bosoni; în contrast cu fermionii, ei se pot afla în număr mai mare în aceeași stare cuantică. Exemple de bosoni sunt fotonul și bosonii W
Principiul de excluziune () [Corola-website/Science/311301_a_312630]
-
cărui valoare este formula 1 înmulțită cu un număr semiîntreg (1/2, 3/2, 5/2, etc.). În teoria mecanicii cuantice, fermionii sunt descriși ca "stări antisimetrice". Particulele cu spin întreg au o funcție de undă simetrică și se numesc bosoni; în contrast cu fermionii, ei se pot afla în număr mai mare în aceeași stare cuantică. Exemple de bosoni sunt fotonul și bosonii W și Z. La începutul secolului al XX-lea, a devenit clar că atomii și moleculele cu perechi de electroni sau
Principiul de excluziune () [Corola-website/Science/311301_a_312630]
-
fie normalizabili la 1. Cu alte cuvinte, particulele din acest sistem nu pot fi găsite ca ocupând aceeași stare cuantică. Principiul de excluziune ajută la explicarea unei largi varietăți de fenomene fizice. Un astfel de fenomen este "rigiditatea" materiei obișnuite (fermioni): principiul afirmă că fermioni identici nu pot intra unii în alții, de unde observațiile noastre de zi cu zi din lumea macroscopică, unde obiectele materiale se ciocnesc în loc să treacă unele prin altele, și putem sta pe pământ fără a intra în
Principiul de excluziune () [Corola-website/Science/311301_a_312630]
-
Cu alte cuvinte, particulele din acest sistem nu pot fi găsite ca ocupând aceeași stare cuantică. Principiul de excluziune ajută la explicarea unei largi varietăți de fenomene fizice. Un astfel de fenomen este "rigiditatea" materiei obișnuite (fermioni): principiul afirmă că fermioni identici nu pot intra unii în alții, de unde observațiile noastre de zi cu zi din lumea macroscopică, unde obiectele materiale se ciocnesc în loc să treacă unele prin altele, și putem sta pe pământ fără a intra în el. O altă consecință
Principiul de excluziune () [Corola-website/Science/311301_a_312630]
-
al atomilor și felul în care atomii își partajează electronii - de unde varietatea elementelor și compușilor acestora. (Un atom neutru din punct de vedere electric are un număr de electroni legați egal cu cel al protonilor din nucleu. Deoarece electronii sunt fermioni, principiul de excluziune le interzice să ocupe aceeași stare cuantică, astfel electroni trebuie să "se adune unii peste alții" în cadrul unui atom).
Principiul de excluziune () [Corola-website/Science/311301_a_312630]
-
a gazului care nu se datorează acțiunii forțelor intermoleculare, fenomen cunoscut sub denumirea de "condensare Einstein", iar gazul aflat într-o asemenea stare energetică se numește condensatul lui Einstein. Un gaz perfect Fermi este un gaz format din particule numite fermioni, caracterizate prin aceea că au spinii semîntregi, aflate în stare de echilibru termodinamic și care se supun legilor statisticii Fermi-Dirac din cadrul mecanicii statistice cuantice. Ecuația de distribuție Fermi-Dirac pentru un sistem de fermioni se poate scrie sub forma:formula 82. Prin
Gaz perfect () [Corola-website/Science/309598_a_310927]
-
este un gaz format din particule numite fermioni, caracterizate prin aceea că au spinii semîntregi, aflate în stare de echilibru termodinamic și care se supun legilor statisticii Fermi-Dirac din cadrul mecanicii statistice cuantice. Ecuația de distribuție Fermi-Dirac pentru un sistem de fermioni se poate scrie sub forma:formula 82. Prin calcule proprii statisticii Fermi-Dirac se găsesc ecuațiile de stare calorice și termice precum și expresiile unor mărimi fizice care caracterizează gazul Fermi. Ecuația de stare a gazului Fermi în cazul degenerării slabe are forma
Gaz perfect () [Corola-website/Science/309598_a_310927]
-
gazului nul formula 95, gazul Fermi dispune de energie apreciabilă la această temperatură. Numărul stărilor cu energie cuprinsă sub o anumită valoare formula 96 se evaluează prin integrala:formula 97 Pentru formula 98, se obține formula 99, prin urmare formula 100 se identifică cu numărul de fermioni:formula 101 de unde valoarea limită a energiei se scrie sub forma:formula 102 Între mărimea formula 103 și factorul formula 91 existând relația:formula 105, energia gazului la zero absolut este dată de relația: formula 106. Energia formula 107 se numește "energie Fermi". Această energie reprezintă energia
Gaz perfect () [Corola-website/Science/309598_a_310927]
-
existând relația:formula 105, energia gazului la zero absolut este dată de relația: formula 106. Energia formula 107 se numește "energie Fermi". Această energie reprezintă energia celui mai înalt nivel energetic completat la temperatura zero abslout, pentru un sistem dat, compus din N fermioni. Energia unui singur fermion la zero absolut este formula 108
Gaz perfect () [Corola-website/Science/309598_a_310927]
-
gazului la zero absolut este dată de relația: formula 106. Energia formula 107 se numește "energie Fermi". Această energie reprezintă energia celui mai înalt nivel energetic completat la temperatura zero abslout, pentru un sistem dat, compus din N fermioni. Energia unui singur fermion la zero absolut este formula 108
Gaz perfect () [Corola-website/Science/309598_a_310927]
-
a nucleului. Dacă numărul electronilor nu este egal cu cel al protonilor, atunci este un ion, pozitiv sau negativ. Numărul nucleelor în atom determină masa atomică a acestuia, notată cu A. Protonii, neutronii șl electronii fac parte din clasa de fermioni, având spin semiîntreg. Interacțiunea nucleară forte / tare, cea mai puternică din cele patru forțe naturale ale fizicii, are rolul de a menține o coeziune în interiorul nucleului. Cromodinamica cuantică se ocupă cu studiul forței exercitate în interiorul nucleilor. Datorită scalei microscopice, pentru
Fizică nucleară () [Corola-website/Science/308913_a_310242]
-
În fizică, o cuantă (plural: cuante) reprezintă o entitate indivizibilă a valorii energiei respectiv al momentului particulelor elementare ale materiei (numite fermioni) cât și a fotonilor sau alți bosoni. Cuvântul provine din latinescul "quantus", care înseamnă "cât." Descoperirea faptului că o proprietate fizică poate fi "cuantificată", a dus la noțiunea de "cuantizare". Asta înseamnă că o proprietate poate lua doar anumite valori
Cuantă () [Corola-website/Science/314659_a_315988]
-
funcții de undă deoarece s-a efectuat ceva pentru a determina poziția unui electron, starea electronului devine o eigen-stare a poziției, ceea ce înseamnă că poziția are o valoare cunoscută. Principiul exluziunii al lui Pauli spune că nici un electron (sau alt fermion) nu poate fi în aceași stare cuantică cu altul din același atom. Wolfgang Pauli a extins principiul excluziunii al lui Pauli folosind ceea ce el a denumit "grad de libertate cuantic bivalent" pentru a descrie observațiile unui dublet, care înseamnă o
Introducere în mecanica cuantică () [Corola-website/Science/314087_a_315416]
-
răcire al acceleratorului de particule Large Hadron Collider de la CERN. . Fizicienii au creat recent un condensat fermionic din perechi de atomi fermionici ultra-reci. În anumite condiții, perechile fermionice formează molecule diatomice și se supun condensării Bose-Einstein. Pe de altă parte, fermionii (mai ales electronii supraconductoari) formează perechi Cooper, care, de asemenea, manifestă superfluiditate. Acest lucru recent cu gazele atomice ultra-reci a permis oamenilor de știință să studieze regiunea dintre aceste două extreme, cunoscută sub numele de crossover BEC-BCS. În plus, supersolidele
Superfluid () [Corola-website/Science/314338_a_315667]
-
total de 36 de particule considerate fundamentale (fără substructură), la care se adaugă încă 2 particule ipotetice, și 4 tipuri de interacțiuni de bază (forțe). Particulele fundamentale sunt împărțite în două mari categorii după o proprietate numită spin, și anume fermioni fundamentali (a căror valoare a spinului e un număr fracționar) și bosoni fundamentali (a căror valoare a spinului e un număr întreg). Fermionii fundamentali sunt împărțiți în quarkuri și leptoni. Există 6 quarkuri și 6 leptoni, cu tot atâtea antiparticule
Modelul standard () [Corola-website/Science/314441_a_315770]
-
bază (forțe). Particulele fundamentale sunt împărțite în două mari categorii după o proprietate numită spin, și anume fermioni fundamentali (a căror valoare a spinului e un număr fracționar) și bosoni fundamentali (a căror valoare a spinului e un număr întreg). Fermionii fundamentali sunt împărțiți în quarkuri și leptoni. Există 6 quarkuri și 6 leptoni, cu tot atâtea antiparticule corespondente; de menționat că dacă se ia în calcul sarcina color a quarkurilor (de 3 feluri), se obțin 18 quarkuri cu tot atâtea
Modelul standard () [Corola-website/Science/314441_a_315770]
-
6 leptoni, cu tot atâtea antiparticule corespondente; de menționat că dacă se ia în calcul sarcina color a quarkurilor (de 3 feluri), se obțin 18 quarkuri cu tot atâtea antiquarkuri, ridicând numărul total al particulelor fundamentale la 60. Interacțiunile dintre fermioni sunt mediate prin schimbul unor particule de etalonare, bosonii intermediari, asociate celor 4 forțe fundamentale. Bosonii intermediari sunt: fotonul (corespondent forței electromagnetice), 3 bosoni vector slabi (corespondenți forței nucleare slabe), 8 gluoni (corespondenți forței nucleare tari) și ipoteticul graviton (corespondent
Modelul standard () [Corola-website/Science/314441_a_315770]
-
ocupare, emisia și absorbția de radiație fiind descrise de operatori de creare și anihilare. Punctul de vedere ondulatoriu a fost introdus în același an de Jordan, care a indicat că operatorii de creare și anihilare trebuie utilizați și pentru electroni (fermioni), descriși printr-un câmp cuantic. Fermi a publicat în 1930 o versiune concisă de electrodinamică cuantică, în care electronii atomici erau descriși de ecuația relativistă a lui Dirac. La începutul deceniului 1930, electrodinamica fusese așadar reformulată conform cu principiile teoriei relativității
Electrodinamică cuantică () [Corola-website/Science/318918_a_320247]
-
corespund buclelor interne. Pentru a calcula elementul de matrice formula 119 se construiesc toate diagramele Feynman cu formula 117 vertexuri, topologic distincte și cu liniile externe corespunzătoare stărilor inițială și finală. Contribuțiile lor se sumează, semnul fiecărui termen fiind determinat de permutările fermionilor din stările inițială și finală și de numărul buclelor fermionice interne. Rezultatul obținut pe baza diagramelor Feynman este cel indicat de teorema lui Wick. Expresiile analitice ale amplitudinilor sunt bine definite în ordinul cel mai jos al teoriei perturbațiilor; în
Electrodinamică cuantică () [Corola-website/Science/318918_a_320247]
-
și nucleonii sunt de fapt compuși, iar componenții lor, botezați „quarcuri” (en: Quark s) de către fizicianul teoretician Murray Gell-Mann, sunt considerați a fi indivizibili, adică particule elementare ca și electronii. urile sunt particule de spin 1/2, din familia de fermioni (un fermion, doi fermioni), nume generic atribuit particulelor care au proprietatea că nu se pot găsi în aceeași stare cuantică, spre deosebire de bosoni, particule cu spin întreg sau zero (0, 1, 2, ...), care au adesea rolul de mediator sau de „transportor
Quarc () [Corola-website/Science/298330_a_299659]
-
sunt de fapt compuși, iar componenții lor, botezați „quarcuri” (en: Quark s) de către fizicianul teoretician Murray Gell-Mann, sunt considerați a fi indivizibili, adică particule elementare ca și electronii. urile sunt particule de spin 1/2, din familia de fermioni (un fermion, doi fermioni), nume generic atribuit particulelor care au proprietatea că nu se pot găsi în aceeași stare cuantică, spre deosebire de bosoni, particule cu spin întreg sau zero (0, 1, 2, ...), care au adesea rolul de mediator sau de „transportor” de radiație
Quarc () [Corola-website/Science/298330_a_299659]