78 matches
-
corespund buclelor interne. Pentru a calcula elementul de matrice formula 119 se construiesc toate diagramele Feynman cu formula 117 vertexuri, topologic distincte și cu liniile externe corespunzătoare stărilor inițială și finală. Contribuțiile lor se sumează, semnul fiecărui termen fiind determinat de permutările fermionilor din stările inițială și finală și de numărul buclelor fermionice interne. Rezultatul obținut pe baza diagramelor Feynman este cel indicat de teorema lui Wick. Expresiile analitice ale amplitudinilor sunt bine definite în ordinul cel mai jos al teoriei perturbațiilor; în
Electrodinamică cuantică () [Corola-website/Science/318918_a_320247]
-
identice a arătat că acestea pot fi clasificate, din punctul de vedere al distribuției statistice în spațiul stărilor, în două categorii exclusive. Particulele care ascultă de statistica Bose-Einstein au fost numite bosoni; cele care urmează statistica Fermi-Dirac au fost numite fermioni. Calitatea de boson sau fermion este legată de proprietatea funcției de stare de a fi simetrică sau antisimetrică: Calitatea de boson sau fermion este legată de spinul particulei: În cazul unui sistem de particule dinamic independente, hamiltonianul este o sumă
Particule identice () [Corola-website/Science/333894_a_335223]
-
pot fi clasificate, din punctul de vedere al distribuției statistice în spațiul stărilor, în două categorii exclusive. Particulele care ascultă de statistica Bose-Einstein au fost numite bosoni; cele care urmează statistica Fermi-Dirac au fost numite fermioni. Calitatea de boson sau fermion este legată de proprietatea funcției de stare de a fi simetrică sau antisimetrică: Calitatea de boson sau fermion este legată de spinul particulei: În cazul unui sistem de particule dinamic independente, hamiltonianul este o sumă de operatori care acționează, fiecare
Particule identice () [Corola-website/Science/333894_a_335223]
-
care ascultă de statistica Bose-Einstein au fost numite bosoni; cele care urmează statistica Fermi-Dirac au fost numite fermioni. Calitatea de boson sau fermion este legată de proprietatea funcției de stare de a fi simetrică sau antisimetrică: Calitatea de boson sau fermion este legată de spinul particulei: În cazul unui sistem de particule dinamic independente, hamiltonianul este o sumă de operatori care acționează, fiecare dintre ei, asupra unei singure particule: Ecuația Schrödinger se separă în ecuații uniparticulă Soluția globală corespunzătoare este Această
Particule identice () [Corola-website/Science/333894_a_335223]
-
starea sistemului în care particula cu indice formula 27 se află în starea formula 28 de energie formula 29, nu satisface postulatul simetrizării. Semnificație fizică au doar soluțiile obținute prin aplicarea operatorului de simetrizare sau antisimetrizare, după cum este vorba de bosoni sau de fermioni. În cazul fermionic, funcția antisimetrică se scrie compact ca "determinant Slater": În această formă, antisimetria rezultă explicit din schimbarea semnului determinantului la permutarea liniilor. Iar dacă două coloane sunt identice, determinantul este zero și nu poate reprezenta funcția de stare
Particule identice () [Corola-website/Science/333894_a_335223]
-
centrul său, ea este susținută doar de presiunea de degenerare a electronilor. În această stare, materia este atât de densă încât orice compresie suplimentară ar face ca mai mulți electroni să ocupe aceeași stare cuantică. Principiul de excluziune Pauli împiedică fermionii (clasă de particule din care fac parte și electronii) să facă aceasta. Când masa miezului depășește limita Chandrasekhar, presiunea de degenerare nu o mai poate susține, și are loc un colaps catastrofal. Partea exterioară a miezului ajunge să se prăbușească
Supernovă de tip II () [Corola-website/Science/317469_a_318798]
-
a nucleului. Dacă numărul electronilor nu este egal cu cel al protonilor, atunci este un ion, pozitiv sau negativ. Numărul nucleelor în atom determină masa atomică a acestuia, notată cu A. Protonii, neutronii șl electronii fac parte din clasa de fermioni, având spin semiîntreg. Interacțiunea nucleară forte / tare, cea mai puternică din cele patru forțe naturale ale fizicii, are rolul de a menține o coeziune în interiorul nucleului. Cromodinamica cuantică se ocupă cu studiul forței exercitate în interiorul nucleilor. Datorită scalei microscopice, pentru
Fizică nucleară () [Corola-website/Science/308913_a_310242]
-
cu condensarea Bose-Einstein. În 1972, acelasi fenomen a fost observat la heliu-3, însă la temperaturi aproape de zero absolut, de către fizicienii americani Douglas D. Osheroff, David M. Lee și Robert C. Richardson. Se crede că fenomenul este legat de împerecherea unui fermion al heliului-3 pentru obținerea bozonilor, în analogie cu perechile Cooper de electroni pentru producerea superconductivității. Heliul are în alcătuirea să 2 electroni care orbitează în jurul unui nucleu ce conține doi protoni și între doi și 10 neutroni (în funcție de izotop). Mecanică
Heliu () [Corola-website/Science/302350_a_303679]
-
este simplu: perechea de neutroni și perechea de electroni din nucleu se supun exact acelorași reguli de mecanica cuantică că și perechea de electroni ai heliului (deși particulele nucleare se supun unor potențiale de legătură diferite), astfel că toți acești fermioni ocupă complet stratul 1s în perechi nici unul neavând un moment orbital angular, fiecare anulându-și reciproc spin-ul intrinsec. Această aranjare este extrem de stabilă energetic pentru toate particulele, si aceasta stabilitate explică multe caracteristici cruciale ale heliului în natură. De
Heliu () [Corola-website/Science/302350_a_303679]
-
Kelvin, într-un frigider de He-3 Amestecuri egale de heliu-3 lichid și heliu-4 sub 0,8 K separă în două faze nemiscibile din cauza neasemănărilor (au urmat diferite statistici cuantice: atomii de heliu-4 sunt bosonii e în timp ce atomii de heliu-3 sunt fermioni) Este utilizat frigiderul de diluare pentru acest caracter imiscibil pentru a atinge temperaturi de câteva millikelvins. Este posibil să se producă izotopi exotici de heliu, care se dezintegrează rapid în alte substanțe. Izotopul de heliu cu cea mai scurtă durată
Heliu () [Corola-website/Science/302350_a_303679]
-
este simplu: perechea de neutroni și perechea de electroni din nucleu se supun exact acelorași reguli de mecanica cuantică că și perechea de electroni ai heliului (deși particulele nucleare se supun unor potențiale de legătură diferite), astfel că toți acești fermioni ocupă complet stratul 1s în perechi nici unul neavând un moment orbital angular, fiecare anulându-și reciproc spin-ul intrinsec. Această aranjare este extrem de stabilă energetic pentru toate particulele, si aceasta stabilitate explică multe caracteristici cruciale ale heliului în natură. De
Heliu () [Corola-website/Science/302350_a_303679]
-
unele fenomene pur energetice, cum ar fi de exemplu câmpurile de forțe. Fizica de particule cuantifică acest aspect împărțind particulele elementare în două categorii: cele care alcătuiesc materia „de zi cu zi”, care constă în mare parte din atomi, numite "fermioni", și așa numiții "bosoni", particule elementare responsabile pentru acțiunea forțelor. După această definiție, numai materia "fermionică" este considerată materie. Antimateria este la rândul ei o formă a materiei. În domeniul cosmologiei și astrofizicii se constată o discrepanță între comportamentul observat
Univers () [Corola-website/Science/299069_a_300398]
-
delta - particulele respingându-se sau atrăgându-se atunci când se află în același punct. Ecuația neliniară a lui Schrödinger este integrabilă atunci când particulele se mișcă în spațiul unidimensional. Când forța repulsivă tinde spre infinit, ecuația neliniară Schrödinger bosonică este echivalentă cu fermionul liber din unidimensional. este o ecuație cu derivate parțiale pentru un câmp complex ψ. Această ecuație provine din Hamiltonianul: cu parantezele lui Poisson: Pentru a obține versiunea cuantificată, pur și simplu se înlocuiesc parantezele Poisson prin comutatori: iar prin ordine
Ecuația Schrödinger neliniară () [Corola-website/Science/317730_a_319059]
-
concentrează asupra potențialului chimic ca funcție a locației spațiale. Particulele tind să se difuzeze din regiunile cu potențial chimic ridicat către cele cu potențial chimic scăzut. Fiind o funcție a energiei interne, potențialul chimic se aplică în mod egal și fermionilor și bosonilor. Aceasta înseamnă că, în teorie, oricărei particule fundamentale îi poate fi atribuită o valoare de potențial chimic, depinzând de modul în care schimbă energia internă a sistemului în cadrul căruia este introdus. Aplicarea conceptelor potențialului chimic pentru sisteme la
Potențial chimic () [Corola-website/Science/321747_a_323076]
-
În fizica particulelor elementare, un hiperon este orice barion care conține unul sau mai multe quarcuri strânge, dar niciun quarc charm sau bottom. Fiind barioni, toți hiperonii sunt fermioni. Adică, au spin semiîntreg și se supun statisticii Fermi-Dirac. Toți interacționează prin intermediul forței nucleare țări, ceea ce înseamnă că sunt tipuri de hadroni. Sunt compuși din trei quarcuri ușoare, dintre care cel puțin unul este un quarc strânge, fiind deci barioni
Hiperon () [Corola-website/Science/328887_a_330216]
-
În fizică, o cuantă (plural: cuante) reprezintă o entitate indivizibilă a valorii energiei respectiv al momentului particulelor elementare ale materiei (numite fermioni) cât și a fotonilor sau alți bosoni. Cuvântul provine din latinescul "quantus", care înseamnă "cât." Descoperirea faptului că o proprietate fizică poate fi "cuantificată", a dus la noțiunea de "cuantizare". Asta înseamnă că o proprietate poate lua doar anumite valori
Cuantă () [Corola-website/Science/314659_a_315988]
-
mecanicii statistice clasice au fost puse de Gibbs (1884). Ulterior, dinamica clasică a componentelor microscopice ale sistemului a fost completată cu cea dată de mecanica cuantică, inclusiv calcularea ponderilor asociate stărilor microscopice: conform statisticilor Bose-Einstein pentru bosoni sau Fermi-Dirac pentru fermioni. Teoria cinetcă utilizează metode statistice pentru a determina proprietățile macroscopice ale unui sistem, pornind de la dinamica microscopică (forțele care acționează la scară moleculară și atomică). Spre deosebire de mecanica statistică, nu se limitează la studiul stărilor de echilibru termodinamic. James Clerk Maxwell
Fizică statistică () [Corola-website/Science/319325_a_320654]
-
, numit și Principiul Pauli este un principiu din mecanica cuantică, formulat de Wolfgang Pauli în 1925. Acesta afirmă că doi fermioni identici nu pot ocupa aceeași stare cuantică "simultan". O formulare mai riguroasă a acestui principiu este că, pentru doi fermioni identici, funcția de undă totală este antisimetrică. Pentru electronii dintr-un singur atom, înseamnă că doi electroni nu pot avea
Principiul de excluziune () [Corola-website/Science/311301_a_312630]
-
numit și Principiul Pauli este un principiu din mecanica cuantică, formulat de Wolfgang Pauli în 1925. Acesta afirmă că doi fermioni identici nu pot ocupa aceeași stare cuantică "simultan". O formulare mai riguroasă a acestui principiu este că, pentru doi fermioni identici, funcția de undă totală este antisimetrică. Pentru electronii dintr-un singur atom, înseamnă că doi electroni nu pot avea aceleași patru numere cuantice, adică dacă "n", "l", și "m" sunt aceleași, atunci "m" trebuie să fie diferit, astfel încât electronii
Principiul de excluziune () [Corola-website/Science/311301_a_312630]
-
loc cuantic - pentru că funcția de undă a unui astfel de sistem ar trebui să fie egală cu opusul său - și singura funcție de undă care satisface această condiție este funcția de undă nulă. Particulele cu funcții de undă antisimetrice se numesc fermioni—și respectă principiul de excluziune Pauli. În afară de electron, proton și neutron, în această categorie se mai înscriu neutrinii și quarkurile (din care sunt formați protonii și neutronii), precum și unii atomi cum ar fi cel de heliu-3. Toți fermionii au spin
Principiul de excluziune () [Corola-website/Science/311301_a_312630]
-
se numesc fermioni—și respectă principiul de excluziune Pauli. În afară de electron, proton și neutron, în această categorie se mai înscriu neutrinii și quarkurile (din care sunt formați protonii și neutronii), precum și unii atomi cum ar fi cel de heliu-3. Toți fermionii au spin semiîntreg, adică ei au un impuls unghiular intrinsec a cărui valoare este formula 1 înmulțită cu un număr semiîntreg (1/2, 3/2, 5/2, etc.). În teoria mecanicii cuantice, fermionii sunt descriși ca "stări antisimetrice". Particulele cu spin
Principiul de excluziune () [Corola-website/Science/311301_a_312630]
-
atomi cum ar fi cel de heliu-3. Toți fermionii au spin semiîntreg, adică ei au un impuls unghiular intrinsec a cărui valoare este formula 1 înmulțită cu un număr semiîntreg (1/2, 3/2, 5/2, etc.). În teoria mecanicii cuantice, fermionii sunt descriși ca "stări antisimetrice". Particulele cu spin întreg au o funcție de undă simetrică și se numesc bosoni; în contrast cu fermionii, ei se pot afla în număr mai mare în aceeași stare cuantică. Exemple de bosoni sunt fotonul și bosonii W
Principiul de excluziune () [Corola-website/Science/311301_a_312630]
-
cărui valoare este formula 1 înmulțită cu un număr semiîntreg (1/2, 3/2, 5/2, etc.). În teoria mecanicii cuantice, fermionii sunt descriși ca "stări antisimetrice". Particulele cu spin întreg au o funcție de undă simetrică și se numesc bosoni; în contrast cu fermionii, ei se pot afla în număr mai mare în aceeași stare cuantică. Exemple de bosoni sunt fotonul și bosonii W și Z. La începutul secolului al XX-lea, a devenit clar că atomii și moleculele cu perechi de electroni sau
Principiul de excluziune () [Corola-website/Science/311301_a_312630]
-
fie normalizabili la 1. Cu alte cuvinte, particulele din acest sistem nu pot fi găsite ca ocupând aceeași stare cuantică. Principiul de excluziune ajută la explicarea unei largi varietăți de fenomene fizice. Un astfel de fenomen este "rigiditatea" materiei obișnuite (fermioni): principiul afirmă că fermioni identici nu pot intra unii în alții, de unde observațiile noastre de zi cu zi din lumea macroscopică, unde obiectele materiale se ciocnesc în loc să treacă unele prin altele, și putem sta pe pământ fără a intra în
Principiul de excluziune () [Corola-website/Science/311301_a_312630]
-
Cu alte cuvinte, particulele din acest sistem nu pot fi găsite ca ocupând aceeași stare cuantică. Principiul de excluziune ajută la explicarea unei largi varietăți de fenomene fizice. Un astfel de fenomen este "rigiditatea" materiei obișnuite (fermioni): principiul afirmă că fermioni identici nu pot intra unii în alții, de unde observațiile noastre de zi cu zi din lumea macroscopică, unde obiectele materiale se ciocnesc în loc să treacă unele prin altele, și putem sta pe pământ fără a intra în el. O altă consecință
Principiul de excluziune () [Corola-website/Science/311301_a_312630]