524 matches
-
valorile lor măsurate macroscopic sunt asimilate cu valorile medii ale mărimilor microscopice corespunzătoare, admițându-se existența fluctuațiilor. Mărimile termodinamice "temperatură" și "entropie" urmează să fie definite, în cadrul fiecărei distribuții reprezentative, prin parametrii colectivului statistic asociat sistemului. Odată determinat un potențial termodinamic adecvat situației descrise de colectivul statistic, ecuațiile de stare ale sistemului rezultă prin metode termodinamice standard. Analiza modului în care se stabilește echilibrul termodinamic între două sisteme distribuite microcanonic cu energii formula 88 și formula 89, atunci când sunt aduse în contact termic
Mecanică statistică () [Corola-website/Science/319326_a_320655]
-
existența fluctuațiilor. Mărimile termodinamice "temperatură" și "entropie" urmează să fie definite, în cadrul fiecărei distribuții reprezentative, prin parametrii colectivului statistic asociat sistemului. Odată determinat un potențial termodinamic adecvat situației descrise de colectivul statistic, ecuațiile de stare ale sistemului rezultă prin metode termodinamice standard. Analiza modului în care se stabilește echilibrul termodinamic între două sisteme distribuite microcanonic cu energii formula 88 și formula 89, atunci când sunt aduse în contact termic, arată că produsul formula 90 are un maxim pronunțat pentru o anumită valoare a argumentului (un
Mecanică statistică () [Corola-website/Science/319326_a_320655]
-
fie definite, în cadrul fiecărei distribuții reprezentative, prin parametrii colectivului statistic asociat sistemului. Odată determinat un potențial termodinamic adecvat situației descrise de colectivul statistic, ecuațiile de stare ale sistemului rezultă prin metode termodinamice standard. Analiza modului în care se stabilește echilibrul termodinamic între două sisteme distribuite microcanonic cu energii formula 88 și formula 89, atunci când sunt aduse în contact termic, arată că produsul formula 90 are un maxim pronunțat pentru o anumită valoare a argumentului (un singur argument independent, întrucât formula 91) și scade foarte repede
Mecanică statistică () [Corola-website/Science/319326_a_320655]
-
a energiei radiației termice ar rezulta divergentă. Țițeica a arătat că mecanica statistică clasică, bazată pe o distribuție continuă a energiei, este incompatibilă cu principiul al treilea al termodinamicii. Mecanica statistică cuantică se bazează pe același postulat conform căruia proprietățile termodinamice ale unui sistem pot fi deduse pe baza unui colectiv statistic reprezentativ de stări microscopice, dar descrierea acestor stări și alcătuirea acestui colectiv diferă față de mecanica clasică. În mecanica cuantică, o coordonată formula 152 și impulsul conjugat formula 153 nu pot avea
Mecanică statistică () [Corola-website/Science/319326_a_320655]
-
Gazele și electronii din metale sunt astfel de sisteme. Fie un sistem compus dintr-un număr formula 180 de particule identice și fie formula 181 nivelele de energie ale unei particule izolate în condițiile externe date, presupuse cunoscute. Pentru a realiza echilibrul termodinamic, particulele componente trebuie să interacționeze (prin mecanismul „ciocnirilor” din teoria cinetică), dar se presupune că aceste interacțiuni au un efect neglijabil asupra nivelelor de energie. În acest sens, particulele sunt "independente", iar nivelele de energie ale sistemului rezultă din însumarea
Mecanică statistică () [Corola-website/Science/319326_a_320655]
-
izotropă, omogenă și nepolarizată, a cărei densitate de energie u depinde numai de temperatură: u=u(T). Radiația exercită o presiune p asupra pereților cavității și poate efectua un lucru mecanic asupra exteriorului. Ea poate fi privită ca un "obiect" termodinamic cu volumul V drept parametru extensiv (geometric) și pentru care se poate scrie, la o deplasare infinitezimală, :<br>formula 1 unde dQ este caldura primita de la peretii recipientului, iar dS este entropia pierdută de pereți sau "câștigul de entropie al radiației
Entropia radiației electromagnetice () [Corola-website/Science/315884_a_317213]
-
formula 1 unde dQ este caldura primita de la peretii recipientului, iar dS este entropia pierdută de pereți sau "câștigul de entropie al radiației". ( La sfârșitul secolului XIX noțiunea de "eter", ca suport al undelor electromagnetice, era încă acceptată, astfel incât "obíectul" termodinamic ar fi putut fi material). După ecuațiile lui Maxwell, presiunea exercitată de radiația izotropă și omogenă asupra pereților este p = u/3 . Folosind aceasta relație, condiția ca dS din ecuația (1) să fie o diferențială exactă este:<br>formula 2 Această
Entropia radiației electromagnetice () [Corola-website/Science/315884_a_317213]
-
br>formula 4 unde constanta de integrare este zero deoarece entropia se anulează la T=0 sau V=0. Este natural să numim această funcție entropia radiației electromagnetice . Ea trebuie luata in considerație alături de entropia pereților cavității atunci când se fac considerații termodinamice asupra acesteia. Densitatea de entropie s=s(T) este:<br>formula 5 Așa cum densității de energie u(T) îi asociem intensitatea I(T) = cu(T)/(4π), unde c este viteza luminii în vid (ecuația (5) din articolul despre legile lui Kirchhoff
Entropia radiației electromagnetice () [Corola-website/Science/315884_a_317213]
-
posibile crește și în consecință numărul de parametri necesari). Rezultatele lui Laue capătă o interpretare naturală folosind definiția entropiei în mecanica cuantică Faptul că radiația termică exercită o presiune asupra pereților incintei care o conține a fost dedus din considerente termodinamice - de compatibilitate cu principiul al doilea al termodinamicii - independent de ecuațiile lui Maxwell, de către Adolfo Bartoli . Raționamentul lui ingenios a fost preluat de către Boltzmann , care, folosind legea lui Stefan, a dedus chiar faptul ca presiunea radiației este p=u/3
Entropia radiației electromagnetice () [Corola-website/Science/315884_a_317213]
-
legea lui Stefan din formula pentru presiune a lui Maxwell. Construcția unei funcții care, în procesul de stabilire a echilibrului între materie și radiație, să fie monoton crescătoare - și deci să poată fi considerată drept o extindere naturală a entropiei termodinamice - l-a preocupat mulți ani (începând din 1896) pe Max Planck. Soluția prezentată la sfârșit (vezi articolul despre formula lui Planck)- impusă parțial de datele experimentale - a fost revoluționară și a însemnat începutul mecanicii cuantice. O privire atentă arată însă
Entropia radiației electromagnetice () [Corola-website/Science/315884_a_317213]
-
constantă, intensitatea este independentă de timp și obținem relația între energia medie a oscilatorilor și intensitatea „radiației corpului negru”:<br>formula 2 După Planck, o colecție de N astfel de rezonatori (cu aceeași frecvență proprie) poate fi privită ca un sistem termodinamic chiar în absența câmpului electromagnetic și i se poate atribui o temperatură și o entropie "S(U,N, ν)" ; de asemenea radiația electromagnetică de aceeasi frecvență (în echilibru cu materia) are o entropie (vezi Entropia radiației electromagnetice). În echilibru unul
Rezonatorul lui Planck () [Corola-website/Science/316720_a_318049]
-
Mai precis, o cantitate (-H) care poate fi interpretată ca entropie în stări de neechilibru) are proprietatea că este monoton crescătoare în timp, până când atinge un maximum, corespunzător unei stări de echilibru (adică unei distribuții maxwelliene a vitezelor), analog entropiei termodinamice. Această teoremă remarcabilă a fost primită cu scepticism: motivul este că ireversibilitatea macroscopică a evoluției sistemelor naturale este în contradicție cu reversibilitatea în timp a legilor mecanicii clasice, presupuse că guvernează mișcarea particulelor gazului. Una din criticile celebre ale interpretării
Formula lui Planck () [Corola-website/Science/315089_a_316418]
-
ei pași (1905-1920) este aceea a lui L.Rosenfeld (1936); în timpurile mai noi, articolele lui M.J.Klein cuprind o descriere vie a climatului intelectual din perioada 1895-1910 și pun accent asupra rolului remarcabil pe care l-au jucat consideratiile termodinamice in teoria incipienta a cuantelor. Cartea lui Kangro este o sursă bogată de detalii biografice asupra "actorilor" intelectuali principali și conține o bibliografie exhaustivă. În privința conținutului fizic, claritate deplină se poate obține însă numai din articolele originale ale lui Planck
Formula lui Planck () [Corola-website/Science/315089_a_316418]
-
este un ciclu termodinamic motor, care produce lucru mecanic pe baza căldurii introduse. De obicei drept agent termic este folosită apa. Acest ciclu stă la baza funcționării termocentralelor, indiferent dacă ele folosesc drept sursă de căldură energia combustibililor, fosili sau biomasă, energia nucleară sau
Ciclul Clausius-Rankine () [Corola-website/Science/318657_a_319986]
-
de 1500 iar cea de evacuare este de cca. 600, ciclul turbinelor cu gaze și Clausius-Rankine al turbinelor cu abur se completează remarcabil în ciclurile combinate, obținându-se randamente termice relativ mari, de cca. 54 %. este format din patru transformări termodinamice, conform numerotării din figura alăturată (exemplul se referă la un ciclu funcționând cu abur saturat uscat): Într-un ciclu Clausius-Rankine ideal transformările din pompă și turbină sunt izoentropice, adică pompa și turbina nu generează entropie, deci randamentul lor este maxim
Ciclul Clausius-Rankine () [Corola-website/Science/318657_a_319986]
-
al ciclului devine: În practică, randamentul interior al turbinei este afectat de formarea picăturilor de apă. Pe măsură ce aburul se destinde, el se răcește și se condensează, formând picături care lovesc paletele turbinei, determinând atât reducerea forței asupra lor, prin "pierderi (termodinamice) prin umiditate", cât și fenomene de eroziune și pitting (ciupire), deteriorând paletele. Cea mai simplă cale de evitare a problemei este supraîncălzirea aburului. Prin asta, în diagrama T-s prezentată mai sus punctul 3 va fi situat deasupra domeniului bifazic
Ciclul Clausius-Rankine () [Corola-website/Science/318657_a_319986]
-
titlu mai mare). Se consideră că titlul aburului la ieșirea dintr-o turbină cu condensație trebuie să fie mai mare ca 0,88 0,9. Uneori ciclul Clausius-Rankine cu supraîncălzirea aburului este numit "ciclul Hirn". Randamentul termic al oricărui ciclu termodinamic poate fi crescut prin ridicarea temperaturii medii a sursei calde formula 19 a ciclului. Creșterea temperaturii aburului prin supraîncălzire are exact acest efect. În ciclurile folosite în termocentrale temperatura maximă este limitată de proprietățile materialelor folosite la construcția turbinelor cu abur
Ciclul Clausius-Rankine () [Corola-website/Science/318657_a_319986]
-
Un ciclu termodinamic este totalitatea stărilor prin care trece un sistem termodinamic în cursul unor transformări, începând de la o anumită " stare" și până când revine la aceeași stare. În timpul transformărilor parametrii de stare (presiunea, temperatura și alții) pot varia, însă variația lor totală va
Ciclu termodinamic () [Corola-website/Science/318684_a_320013]
-
Un ciclu termodinamic este totalitatea stărilor prin care trece un sistem termodinamic în cursul unor transformări, începând de la o anumită " stare" și până când revine la aceeași stare. În timpul transformărilor parametrii de stare (presiunea, temperatura și alții) pot varia, însă variația lor totală va fi nulă (revin la valorile din punctul de pornire
Ciclu termodinamic () [Corola-website/Science/318684_a_320013]
-
ciclu este egal cu suma lucrului mecanic efectuat de ciclu ("lucrul mecanic ciclic"). Repetarea continuă a proceselor este un concept important al termodinamicii. Pentru modelarea funcționării mașinilor termice reale, transformările din ciclu sunt considerate "cvasistatice" (nu depind de timp). Ciclurile termodinamice se pot reprezenta în diagrame care au pe axe parametri conjugați, cum sunt p-V, respectiv T-s. Într-o astfel de diagramă un ciclu termodinamic este o buclă închisă. Suprafața închisă de buclă este chiar o măsură a lucrului
Ciclu termodinamic () [Corola-website/Science/318684_a_320013]
-
mașinilor termice reale, transformările din ciclu sunt considerate "cvasistatice" (nu depind de timp). Ciclurile termodinamice se pot reprezenta în diagrame care au pe axe parametri conjugați, cum sunt p-V, respectiv T-s. Într-o astfel de diagramă un ciclu termodinamic este o buclă închisă. Suprafața închisă de buclă este chiar o măsură a lucrului mecanic ciclic, L. Lucrul mecanic ciclic este egal cu bilanțul de căldură al ciclului: unde Q și Q sunt căldurile intrată, respectiv evacuată din ciclu. Relația
Ciclu termodinamic () [Corola-website/Science/318684_a_320013]
-
natură; motiv pentru care unitatea ei de măsură a fost adoptat ca unitate fundamentală. Termometria impune o serie de cerințe, atât asupra instrumentelor de măsură cât și metodei de măsurare, cerințe care rezultă din caracterul procesului de măsurare și proprietățile termodinamice ale sistemului. Instrumentul de măsură trebuie să fie în echilibru termodinamic cu mediul sau corpul al cărui temperatură se măsoară, din această cauză capacitatea calorică a instrumentului trebuie să fie neglijabilă față de capacitatea calorică a corpului de măsurat. Pentru asigurarea
Termometrie () [Corola-website/Science/320066_a_321395]
-
ca unitate fundamentală. Termometria impune o serie de cerințe, atât asupra instrumentelor de măsură cât și metodei de măsurare, cerințe care rezultă din caracterul procesului de măsurare și proprietățile termodinamice ale sistemului. Instrumentul de măsură trebuie să fie în echilibru termodinamic cu mediul sau corpul al cărui temperatură se măsoară, din această cauză capacitatea calorică a instrumentului trebuie să fie neglijabilă față de capacitatea calorică a corpului de măsurat. Pentru asigurarea univocității și proporționalității valorilor măsurate, metoda de măsurare trebuie să se
Termometrie () [Corola-website/Science/320066_a_321395]
-
nevoie de elaborarea unei metodologii numerice obiective a măsurării temperaturii. Introducerea conceptului riguros asupra mărimii fizice temperatură se face în cadrul termodinamicii pe baza principiului zero care afirmă existența unei mărimi scalare numită temperatură, care reprezintă o proprietate a tuturor sistemelor termodinamice, aflate în stări de echilibru, astfel încât egalitatea temperaturilor este o condiție necesară și suficientă pentru realizarea stării de echilibru. Afirmația aceasta este echivalentă cu formularea care exprimă tranzitivitatea echilibrului termic: " Dacă A și B sunt două sisteme aflate în echilibru
Termometrie () [Corola-website/Science/320066_a_321395]
-
se face prin comparare cu termometre etalon, care, la rândul lor, sunt gradate pe baza unor puncte fixe definite de Scara Internațională de Temperatură din 1990 (SIPT-90). SIT-90 folosește mai multe puncte fixe definite, toate bazate pe stări de echilibru termodinamic ale unui număr de 14 elemente chimice pure și unei substanțe compuse, apa. Multe puncte se bazează pe transformări de fază, în special de topire/solidificare a elementelor chimice pure. Cele mai joase puncte criogenice se bazează exclusiv pe relația
Termometrie () [Corola-website/Science/320066_a_321395]