5,288 matches
-
denumite tot Polandball, deși pot fi denumite de asemenea și countryballs. În conformitate cu Lurkmore.to, Bavaria are propria sa minge (ball) după cum altele au mai fost create și pentru Statele Unite ale Americii, Catalonia sau Siberia, printre altele. Singapore are forma unui triunghi și se numește Tringapore; Israel are forma unui hipercub (în referința la fizica everiască); Kazakhstan are forma unei căramizi și Marea Britanie este reprezentată cu joben și monoclu.
Polandball () [Corola-website/Science/326349_a_327678]
-
Triunghiul ortic al unui triunghi este triunghiul determinat de picioarele înălțimilor triunghiului respectiv. Unghiurile triunghiului ortic sunt egale cu: Demonstrație formulă 4 patrulater inscriptibil , deci formulă 5 La fel se procedează și pentru celelalte unghiuri. Dacă notam formulă 6 lațurile triunghiului ortic sunt egale
Triunghi ortic () [Corola-website/Science/326353_a_327682]
-
Triunghiul ortic al unui triunghi este triunghiul determinat de picioarele înălțimilor triunghiului respectiv. Unghiurile triunghiului ortic sunt egale cu: Demonstrație formulă 4 patrulater inscriptibil , deci formulă 5 La fel se procedează și pentru celelalte unghiuri. Dacă notam formulă 6 lațurile triunghiului ortic sunt egale cu: Demonstrație În Δ
Triunghi ortic () [Corola-website/Science/326353_a_327682]
-
Triunghiul ortic al unui triunghi este triunghiul determinat de picioarele înălțimilor triunghiului respectiv. Unghiurile triunghiului ortic sunt egale cu: Demonstrație formulă 4 patrulater inscriptibil , deci formulă 5 La fel se procedează și pentru celelalte unghiuri. Dacă notam formulă 6 lațurile triunghiului ortic sunt egale cu: Demonstrație În Δ CB'A
Triunghi ortic () [Corola-website/Science/326353_a_327682]
-
Triunghiul ortic al unui triunghi este triunghiul determinat de picioarele înălțimilor triunghiului respectiv. Unghiurile triunghiului ortic sunt egale cu: Demonstrație formulă 4 patrulater inscriptibil , deci formulă 5 La fel se procedează și pentru celelalte unghiuri. Dacă notam formulă 6 lațurile triunghiului ortic sunt egale cu: Demonstrație În Δ CB'A' folosim teorema sinusurilor : În Δ
Triunghi ortic () [Corola-website/Science/326353_a_327682]
-
Triunghiul ortic al unui triunghi este triunghiul determinat de picioarele înălțimilor triunghiului respectiv. Unghiurile triunghiului ortic sunt egale cu: Demonstrație formulă 4 patrulater inscriptibil , deci formulă 5 La fel se procedează și pentru celelalte unghiuri. Dacă notam formulă 6 lațurile triunghiului ortic sunt egale cu: Demonstrație În Δ CB'A' folosim teorema sinusurilor : În Δ AA'C = dreptunghic
Triunghi ortic () [Corola-website/Science/326353_a_327682]
-
Triunghiul ortic al unui triunghi este triunghiul determinat de picioarele înălțimilor triunghiului respectiv. Unghiurile triunghiului ortic sunt egale cu: Demonstrație formulă 4 patrulater inscriptibil , deci formulă 5 La fel se procedează și pentru celelalte unghiuri. Dacă notam formulă 6 lațurile triunghiului ortic sunt egale cu: Demonstrație În Δ CB'A' folosim teorema sinusurilor : În Δ AA'C = dreptunghic, avem: formulă 11 Din (1) și (2): Analog, se obțin și celelalte relații. Dacă notam: și aplicăm teorema sinusurilor acestui triunghi, obținem: Prin urmare
Triunghi ortic () [Corola-website/Science/326353_a_327682]
-
notam formulă 6 lațurile triunghiului ortic sunt egale cu: Demonstrație În Δ CB'A' folosim teorema sinusurilor : În Δ AA'C = dreptunghic, avem: formulă 11 Din (1) și (2): Analog, se obțin și celelalte relații. Dacă notam: și aplicăm teorema sinusurilor acestui triunghi, obținem: Prin urmare:
Triunghi ortic () [Corola-website/Science/326353_a_327682]
-
martie 1922, prin comasarea mai multor situri temporare, și aici au fost înmormântați soldați morți în toată zona dintre Aisne și Marna în 1918, împreună cu 70 de oameni uciși în 1914 în prima bătălie de pe Marna. În New York City, un triunghi de aflat la intersecția străzii 108 cu bulevardul 51 din Queens este dedicat soldatului William F. Moore, din Compania 47, Batalionul 2, Regimentul 5 Pușcași Marini. Regimentele 5 și 6 Pușcași Marini au primit decorația franceză Fourragère pentru faptele lor
Bătălia din pădurea Belleau () [Corola-website/Science/322512_a_323841]
-
Lucrarea este scrisă sub formă de scrisoare adresată prietenului său Dositheus și cuprinde 24 de propoziții despre parabolă, culminând cu demonstrația că aria segmentului parabolic (aria dintre parabolă și dreapta secantă) este egală cu 4/3 din aria unui anumit triunghi înscris. Demonstrația folosește metoda epuizării. Arhimede împarte aria într-o infinitate de triunghiuri a căror arie formează o progresie geometrică. El calculează suma seriei și dovedește că rezultatul reprezintă aria segmentului parabolic. Acest lucru reprezintă cea mai sofisticată folosire a
Cuadratura parabolei () [Corola-website/Science/322554_a_323883]
-
24 de propoziții despre parabolă, culminând cu demonstrația că aria segmentului parabolic (aria dintre parabolă și dreapta secantă) este egală cu 4/3 din aria unui anumit triunghi înscris. Demonstrația folosește metoda epuizării. Arhimede împarte aria într-o infinitate de triunghiuri a căror arie formează o progresie geometrică. El calculează suma seriei și dovedește că rezultatul reprezintă aria segmentului parabolic. Acest lucru reprezintă cea mai sofisticată folosire a metodei epuizării din antichitate și a rămas neîntrecută până la dezvoltarea calculului integral în
Cuadratura parabolei () [Corola-website/Science/322554_a_323883]
-
rămas neîntrecută până la dezvoltarea calculului integral în secolul al XVII-lea, fiind urmată de . Un segmentul parabolic este regiunea delimitată de parabolă și dreapta secantă care o taie. Pentru a afla aria unui segment parabolic, Arhimede a considerat un anumit triunghi înscris. Baza acestui triunghi este dată de coarda parabolei, iar cel de al treilea vârf al triunghiului este ales în așa fel încât cele trei drepte verticale care trec prin vârfuri sunt egal depărtate și paralele cu axa parabolei. Teorema
Cuadratura parabolei () [Corola-website/Science/322554_a_323883]
-
calculului integral în secolul al XVII-lea, fiind urmată de . Un segmentul parabolic este regiunea delimitată de parabolă și dreapta secantă care o taie. Pentru a afla aria unui segment parabolic, Arhimede a considerat un anumit triunghi înscris. Baza acestui triunghi este dată de coarda parabolei, iar cel de al treilea vârf al triunghiului este ales în așa fel încât cele trei drepte verticale care trec prin vârfuri sunt egal depărtate și paralele cu axa parabolei. Teorema afirmă că aria segmentului
Cuadratura parabolei () [Corola-website/Science/322554_a_323883]
-
este regiunea delimitată de parabolă și dreapta secantă care o taie. Pentru a afla aria unui segment parabolic, Arhimede a considerat un anumit triunghi înscris. Baza acestui triunghi este dată de coarda parabolei, iar cel de al treilea vârf al triunghiului este ales în așa fel încât cele trei drepte verticale care trec prin vârfuri sunt egal depărtate și paralele cu axa parabolei. Teorema afirmă că aria segmentului parabolic este 4/3 din aria triunghiului înscris. Arhimede a dat două demonstrații
Cuadratura parabolei () [Corola-website/Science/322554_a_323883]
-
cel de al treilea vârf al triunghiului este ales în așa fel încât cele trei drepte verticale care trec prin vârfuri sunt egal depărtate și paralele cu axa parabolei. Teorema afirmă că aria segmentului parabolic este 4/3 din aria triunghiului înscris. Arhimede a dat două demonstrații ale teoremei principale. Prima demonstrație folosește mecanica abstractă, cu care Arhimede argumentează că greutatea segmentului va echilibra greutatea triunghiului când sunt așezate pe o pârghie. Cea de-a doua, faimoasă datorită folosirii geometriei pure
Cuadratura parabolei () [Corola-website/Science/322554_a_323883]
-
paralele cu axa parabolei. Teorema afirmă că aria segmentului parabolic este 4/3 din aria triunghiului înscris. Arhimede a dat două demonstrații ale teoremei principale. Prima demonstrație folosește mecanica abstractă, cu care Arhimede argumentează că greutatea segmentului va echilibra greutatea triunghiului când sunt așezate pe o pârghie. Cea de-a doua, faimoasă datorită folosirii geometriei pure, folosește metoda epuizării. Din cele 24 de propoziții, primele trei sunt citate fără demonstrație după lucrarea lui Euclid "Elementele Conicelor" (lucrare azi pierdută). Propozițiile patru
Cuadratura parabolei () [Corola-website/Science/322554_a_323883]
-
patru și cinci stabilesc proprietățile elementare ale parabolei; propozițiile de la șase la șaptesprezece dau demonstrația mecanică a teoremei; iar propozițiile de la optsprezece la douăzeci și patru dau demonstrația geometrică. Ideea principală a demonstrației constă în împărțirea segmentului parabolic într-o infinitate de triunghiuri, după cum se arată în figura din dreapta. Fiecare dintre aceste triunghiuri sunt înscrise în propriile lor segmente parabolice, în același mod în care triunghiul albastru a fost înscris în segmentul cel mare. În propozițiile de la optsprezece la douăzeci și unu Arhimede demonstrează că
Cuadratura parabolei () [Corola-website/Science/322554_a_323883]
-
șase la șaptesprezece dau demonstrația mecanică a teoremei; iar propozițiile de la optsprezece la douăzeci și patru dau demonstrația geometrică. Ideea principală a demonstrației constă în împărțirea segmentului parabolic într-o infinitate de triunghiuri, după cum se arată în figura din dreapta. Fiecare dintre aceste triunghiuri sunt înscrise în propriile lor segmente parabolice, în același mod în care triunghiul albastru a fost înscris în segmentul cel mare. În propozițiile de la optsprezece la douăzeci și unu Arhimede demonstrează că aria fiecărui triunghi verde este 1/8 din aria triunghiului
Cuadratura parabolei () [Corola-website/Science/322554_a_323883]
-
douăzeci și patru dau demonstrația geometrică. Ideea principală a demonstrației constă în împărțirea segmentului parabolic într-o infinitate de triunghiuri, după cum se arată în figura din dreapta. Fiecare dintre aceste triunghiuri sunt înscrise în propriile lor segmente parabolice, în același mod în care triunghiul albastru a fost înscris în segmentul cel mare. În propozițiile de la optsprezece la douăzeci și unu Arhimede demonstrează că aria fiecărui triunghi verde este 1/8 din aria triunghiului albastru. Din punct de vedere al calcului modern, acest lucru este adevărat deoarece
Cuadratura parabolei () [Corola-website/Science/322554_a_323883]
-
arată în figura din dreapta. Fiecare dintre aceste triunghiuri sunt înscrise în propriile lor segmente parabolice, în același mod în care triunghiul albastru a fost înscris în segmentul cel mare. În propozițiile de la optsprezece la douăzeci și unu Arhimede demonstrează că aria fiecărui triunghi verde este 1/8 din aria triunghiului albastru. Din punct de vedere al calcului modern, acest lucru este adevărat deoarece triunghiul verde are prin construcție baza egală cu jumătate din lungimea triunghiului albastru, iar înălțimea egală cu 1/4. Afirmația
Cuadratura parabolei () [Corola-website/Science/322554_a_323883]
-
triunghiuri sunt înscrise în propriile lor segmente parabolice, în același mod în care triunghiul albastru a fost înscris în segmentul cel mare. În propozițiile de la optsprezece la douăzeci și unu Arhimede demonstrează că aria fiecărui triunghi verde este 1/8 din aria triunghiului albastru. Din punct de vedere al calcului modern, acest lucru este adevărat deoarece triunghiul verde are prin construcție baza egală cu jumătate din lungimea triunghiului albastru, iar înălțimea egală cu 1/4. Afirmația despre înălțime se datorează proprietăților parabolei și
Cuadratura parabolei () [Corola-website/Science/322554_a_323883]
-
albastru a fost înscris în segmentul cel mare. În propozițiile de la optsprezece la douăzeci și unu Arhimede demonstrează că aria fiecărui triunghi verde este 1/8 din aria triunghiului albastru. Din punct de vedere al calcului modern, acest lucru este adevărat deoarece triunghiul verde are prin construcție baza egală cu jumătate din lungimea triunghiului albastru, iar înălțimea egală cu 1/4. Afirmația despre înălțime se datorează proprietăților parabolei și poate fi ușor dovedită folosind calculul modern al geometriei analitice. Prin extensie, fiecare triunghi
Cuadratura parabolei () [Corola-website/Science/322554_a_323883]
-
optsprezece la douăzeci și unu Arhimede demonstrează că aria fiecărui triunghi verde este 1/8 din aria triunghiului albastru. Din punct de vedere al calcului modern, acest lucru este adevărat deoarece triunghiul verde are prin construcție baza egală cu jumătate din lungimea triunghiului albastru, iar înălțimea egală cu 1/4. Afirmația despre înălțime se datorează proprietăților parabolei și poate fi ușor dovedită folosind calculul modern al geometriei analitice. Prin extensie, fiecare triunghi galben are aria egală cu 1/8 din aria triunghiului verde
Cuadratura parabolei () [Corola-website/Science/322554_a_323883]
-
triunghiul verde are prin construcție baza egală cu jumătate din lungimea triunghiului albastru, iar înălțimea egală cu 1/4. Afirmația despre înălțime se datorează proprietăților parabolei și poate fi ușor dovedită folosind calculul modern al geometriei analitice. Prin extensie, fiecare triunghi galben are aria egală cu 1/8 din aria triunghiului verde, cel roșu 1/8 din cel galben și tot așa. Folosind metoda epuizării, urmează că aria totală a segmentului parabolic este dată de: Aici "T" reprezintă aria triunghiului albastru
Cuadratura parabolei () [Corola-website/Science/322554_a_323883]
-
lungimea triunghiului albastru, iar înălțimea egală cu 1/4. Afirmația despre înălțime se datorează proprietăților parabolei și poate fi ușor dovedită folosind calculul modern al geometriei analitice. Prin extensie, fiecare triunghi galben are aria egală cu 1/8 din aria triunghiului verde, cel roșu 1/8 din cel galben și tot așa. Folosind metoda epuizării, urmează că aria totală a segmentului parabolic este dată de: Aici "T" reprezintă aria triunghiului albastru, al doilea termen aria totală a celor două triunghiuri verzi
Cuadratura parabolei () [Corola-website/Science/322554_a_323883]