5,675 matches
-
teorema că suma unghiurilor unui triunghi este egală cu două unghiuri drepte. Dar aceste geometrii, care poartă numele negativ de ne-euclidiene, presupun niște condiții de spațiu nereal și În acest caz nu este decât prea firesc lucru ca raționamentul geometric „ne-euclidian” să conducă la concluzii altele decât acelea care plecaseră de la datele spațiului real, așa precum și silogismul poate, prin mecanismul său logic, nestrămutat, să conducă la concluzii cu total false, dacă astfel sunt premisele lui. Geometria lui Euclid este
[Corola-publishinghouse/Science/2158_a_3483]
-
opticii erau cunoscute din Antichitate; dar aceste principii rămăseseră sterile, Înainte ca matematicile să vină să le Învioreze. Îndată ce acestea din urmă fură aplicate la principiul refracției, descoperirile se iviră ca prin minune. D1 Bouasse ne zice: „Cu Newton optica geometrică s-a dezvoltat pe cale silogistică și, de 200 de ani, progresele acestei ramuri a fizicii sunt paralele cu progresele matematicilor” (p. 185). Cum ar putea Însă fenomenele fizice să asculte de deducțiile matematice, dacă acestea nu ar fi expresia Însăși
[Corola-publishinghouse/Science/2158_a_3483]
-
Adeseori Însă fenomenele nu găsesc nici o explicare și cauza lor se pierde Îndată În taina cauzei ultime. Așa ar fi, spre pildă, cauza vârtoșeniei aliajelor mai mare decât aceea a metalelor care le alcătuiesc; cea a cristalizării mineralelor În forme geometrice determinate; acea a acțiunii curentelor electrice asupra câtorva metale; cea a combinațiilor chimice care, chiar dacă se admite ponderea atomică drept ipoteză explicativă a afinității lor, rămân totuși multe În ceea ce privește proporțiile În care aceste combinații se Înfăptuiesc. În științele repețirii, de
[Corola-publishinghouse/Science/2158_a_3483]
-
pentru care cosmosul este co etern cu principiul său, privilegiază o transcendență de tip spațial, vertical : un dincolo care depășește universul. Creștinismul a asimilat ambele modele, în coprezența lor paradoxală pe care, de altfel, crucea o figurează cu simbolismul ei geometric. Evident că, în funcție de tipul lor spiritual, gînditorii creștini vor pune accentul, fără exclusivism, pe un model sau pe altul. Contemplativi și mistici pasionați din toate timpurile Origen, Evagrie, Grigore de Nyssa, Isaac Sirul, isihaștii, Eckhart, Ruusbroec, beghinele, Cusanus, Silesius, Serafim
STILUL RELIGIEI ÎN MODERNITATEA TÎRZIE by ANCA MANOLESCU () [Corola-publishinghouse/Science/860_a_1739]
-
știință, fusese deja formulată înainte ca primele mișcări seismice să se manifeste. în modelul cusan, lumea e prin definiție imperfectă, neterminată, are o realitate de tipul aproximației în raport cu perfecțiunea modelului ei in divinis. Ca atare, nu poate constitui o figură geometrică perfectă și nu poate avea în mod obiectiv un centru. Dar, dacă nu are un centru obiectiv, lumea are în schimb un pol transcendent. Din el radiază și spre el converg perspectivele centrelor personale, fiecare unic prin poziția și prin
STILUL RELIGIEI ÎN MODERNITATEA TÎRZIE by ANCA MANOLESCU () [Corola-publishinghouse/Science/860_a_1739]
-
Dante, din Siberia și India pînă în Melanezia. El insistă pe faptul că, laolaltă, o inversiune în ce privește regentarea sferelor lumii vizibile de către ierarhiile îngerești. Fiecare treaptă îngerească coordonează cîte o sferă din lumea vizibilă, dar în ordine inversă față de cea geometrică : îngerii cei mai apropiați de centrul lumii invizibile (care e Dumnezeu) coordonează sfera cea mai depărtată de centrul lumii vizibile Astfel că, spune H.-R. Patapievici, dimensiunile lumii văzutelor sînt răsturnatele dimensiunilor lumii nevăzutelor (op. cit., pp. 86-87). Cf., de asemenea
STILUL RELIGIEI ÎN MODERNITATEA TÎRZIE by ANCA MANOLESCU () [Corola-publishinghouse/Science/860_a_1739]
-
toți este (...) acest autor nu s-a mărginit numai să redea idealul său fictiv de organizație a societății ci a încercat să înfăptuiască acest ideal. N-a reușit, însă el voia să facă un stat ideal, să dea o formă geometrică statului, capitala să fie la mijloc, străzile să fie uniforme, oamenii să umble la fel îmbrăcați. Și pentru că nu toți au aceeași statură, unii sunt mai înalți, alții mai mici, el propune ca hainele să fie din cauciuc pentru a
[Corola-publishinghouse/Science/2236_a_3561]
-
câmpul social al scriitorilor din Cluj-Napoca 188 Capitolul 7 Analiza de corespondență și analiza de omogenitate 197 Ce este analiza de corespondență? 197 Logica analizei de corespondență 199 Realizarea unei analize de corespondență 206 Formularea problemei de cercetare 206 Reprezentarea geometrică a categoriilor: calculul distanțelor dintre puncte 207 Inerție, coordonate, interdependență 209 Puncte suplimentare 211 Dimensionalitatea soluției și interpretarea configurației de puncte 212 Validarea rezultatelor 213 Procedura Correspondence Analysis în SPSS 10.1 213 Analiza de omogenitate 215 Procedura Optimal Scaling
[Corola-publishinghouse/Science/2075_a_3400]
-
să decidem care sunt cele mai potrivite proceduri analitice într-o situație de cercetare particulară. Așa cum se va vedea în capitolele ce urmează, două sunt modelele analitice cel mai frecvent folosite pentru a pune în ordine și sintetiza datele: modelul geometric și modelul matriceal. Modelul geometric constă în reprezentarea geometrică a datelor, care dă posibilitatea obținerii unei reprezentări vizuale pentru structura datelor. Cel mai simplu model de organizare a datelor după un model geometric este următorul. Construim un spațiu geometric definit
[Corola-publishinghouse/Science/2075_a_3400]
-
mai potrivite proceduri analitice într-o situație de cercetare particulară. Așa cum se va vedea în capitolele ce urmează, două sunt modelele analitice cel mai frecvent folosite pentru a pune în ordine și sintetiza datele: modelul geometric și modelul matriceal. Modelul geometric constă în reprezentarea geometrică a datelor, care dă posibilitatea obținerii unei reprezentări vizuale pentru structura datelor. Cel mai simplu model de organizare a datelor după un model geometric este următorul. Construim un spațiu geometric definit prin axe de coordonate. Fiecare
[Corola-publishinghouse/Science/2075_a_3400]
-
într-o situație de cercetare particulară. Așa cum se va vedea în capitolele ce urmează, două sunt modelele analitice cel mai frecvent folosite pentru a pune în ordine și sintetiza datele: modelul geometric și modelul matriceal. Modelul geometric constă în reprezentarea geometrică a datelor, care dă posibilitatea obținerii unei reprezentări vizuale pentru structura datelor. Cel mai simplu model de organizare a datelor după un model geometric este următorul. Construim un spațiu geometric definit prin axe de coordonate. Fiecare variabilă reprezintă o axă
[Corola-publishinghouse/Science/2075_a_3400]
-
pune în ordine și sintetiza datele: modelul geometric și modelul matriceal. Modelul geometric constă în reprezentarea geometrică a datelor, care dă posibilitatea obținerii unei reprezentări vizuale pentru structura datelor. Cel mai simplu model de organizare a datelor după un model geometric este următorul. Construim un spațiu geometric definit prin axe de coordonate. Fiecare variabilă reprezintă o axă (o dimensiune). Fiecare obiect ia o valoare pentru fiecare dintre variabile, iar punctul geometric determinat de aceste valori va reprezenta poziția în spațiu a
[Corola-publishinghouse/Science/2075_a_3400]
-
modelul geometric și modelul matriceal. Modelul geometric constă în reprezentarea geometrică a datelor, care dă posibilitatea obținerii unei reprezentări vizuale pentru structura datelor. Cel mai simplu model de organizare a datelor după un model geometric este următorul. Construim un spațiu geometric definit prin axe de coordonate. Fiecare variabilă reprezintă o axă (o dimensiune). Fiecare obiect ia o valoare pentru fiecare dintre variabile, iar punctul geometric determinat de aceste valori va reprezenta poziția în spațiu a obiectului. Există și alte moduri de
[Corola-publishinghouse/Science/2075_a_3400]
-
mai simplu model de organizare a datelor după un model geometric este următorul. Construim un spațiu geometric definit prin axe de coordonate. Fiecare variabilă reprezintă o axă (o dimensiune). Fiecare obiect ia o valoare pentru fiecare dintre variabile, iar punctul geometric determinat de aceste valori va reprezenta poziția în spațiu a obiectului. Există și alte moduri de a organiza datele astfel încât să le dăm o reprezentare grafică, prin care să ajungem la o mai profundă înțelegere a relațiilor dintre variabile, dintre
[Corola-publishinghouse/Science/2075_a_3400]
-
inteligibilă, adică până la trei axe de coordonate. Uneori însă, acest lucru nu este posibil sau nu este adecvat. Modelul matriceal este un alt mod de a reprezenta datele și permite cuprinderea unei informații mai complexe și mai largi decât cel geometric, cel puțin din punctul de vedere al numărului de dimensiuni. Acesta este modelul cu care lucrează pachetele de programe statistice pe calculator, în particular SPSS. Modelul folosit aproape fără excepție este cel al matricelor cu două intrări, de formă tabelară
[Corola-publishinghouse/Science/2075_a_3400]
-
capitolele următoare vom discuta în detaliu câteva astfel de tehnici de analiză a datelor. Putem adânci înțelegerea conceptului de dimensionalitate a datelor dacă ne raportăm la cele două modele de reprezentare a datelor descrise în secțiunea anterioară. În cazul modelului geometric, dimensionalitatea datelor poate fi înțeleasă ca numărul minim de axe de coordonate necesar pentru a reprezenta complet, relevant și coerent obiectele, în funcție de toate sursele importante de variabilitate. În cazul reprezentării matriceale, dimensionalitatea este dată de un termen tehnic, al cărui
[Corola-publishinghouse/Science/2075_a_3400]
-
trebuie să încerce să evite intervenția propriei percepții în interpretare și să se concentreze asupra datelor și a reprezentării obținute. Logica scalării multidimensionaletc "Logica scalării multidimensionale" Scalarea multidimensională produce o hartă perceptuală a situării relative a obiectelor, adică o configurație geometrică de puncte, în funcție de câteva dimensiuni subiective 2. Această reprezentare ne dezvăluie „structura ascunsă” a datelor. Cu cât obiectele sunt mai similare în evaluările sau preferințele subiecților, cu atât distanța dintre ele pe hartă va fi mai mică și, cu cât
[Corola-publishinghouse/Science/2075_a_3400]
-
numi pe elevul B printre prietenii săi, dar B nu îl consideră pe A prietenul său. Scopul nostru într-un demers de scalare multidimensională este acela de a produce o hartă perceptuală a situării relative a obiectelor, adică o configurație geometrică de puncte, în funcție de câteva dimensiuni subiective. Dorim să construim un spațiu multidimensional (în general bidimensional), ale cărui dimensiuni trebuie să le interpretăm. Înainte însă de a ajunge la semnificația dimensiunilor, trebuie să găsim o modalitate de a transforma matricea „agregată
[Corola-publishinghouse/Science/2075_a_3400]
-
Relația dintre două variabile nominale, cu atât mai complexă cu cât numărul de categorii ale variabilelor este mai mare, poate fi deslușită prin reprezentarea ei într-un spațiu cu puține dimensiuni. Mai mult, analiza de corespondență produce o reprezentare vizuală (geometrică) a acestei relații, o hartă perceptuală în care categorii similare ocupă poziții apropiate, iar categorii diferite sunt așezate în poziții depărtate. Dintre celelalte tehnici de interdependență, analiza factorială este cea mai apropiată ca logică de analiza de corespondență. Ca și
[Corola-publishinghouse/Science/2075_a_3400]
-
așezate într-un spațiu cu aceeași dimensionalitate. Logica analizei de corespondențătc "Logica analizei de corespondență" Analiza de corespondență realizează o descriere a datelor cuprinse într-un tabel de contingență, deslușind structura latentă a datelor prin reducerea dimensionalității lor și reprezentarea geometrică (vizuală) a categoriilor într-un spațiu metric. Analiza pornește de la un tabel de contingență, adică de la tabularea a două variabile nominale, una reprezentată pe linii, cealaltă pe coloane. Analitic, se prelucrează separat categoriile fiecăreia dintre variabile. În primul pas se
[Corola-publishinghouse/Science/2075_a_3400]
-
evita distorsiunile în reprezentare, categoriile celor două variabile trebuie să fie exhaustive - lipsa uneia va face imposibilă o redare corectă a relației de corespondență dintre variabile. Variabilele trebuie să fie omogene, astfel încât calculul distanței dintre categorii să aibă semnificație. Reprezentarea geometrică a categoriilor: calculul distanțelor dintre punctetc "Reprezentarea geometrică a categoriilor\: calculul distanțelor dintre puncte" Analiza de corespondență realizează separat câte o reprezentare geometrică pentru fiecare dintre cele două variabile puse în corespondență. În cele ce urmează vom descrie procedura pentru
[Corola-publishinghouse/Science/2075_a_3400]
-
trebuie să fie exhaustive - lipsa uneia va face imposibilă o redare corectă a relației de corespondență dintre variabile. Variabilele trebuie să fie omogene, astfel încât calculul distanței dintre categorii să aibă semnificație. Reprezentarea geometrică a categoriilor: calculul distanțelor dintre punctetc "Reprezentarea geometrică a categoriilor\: calculul distanțelor dintre puncte" Analiza de corespondență realizează separat câte o reprezentare geometrică pentru fiecare dintre cele două variabile puse în corespondență. În cele ce urmează vom descrie procedura pentru variabila reprezentată pe linii, X. Distanța dintre două
[Corola-publishinghouse/Science/2075_a_3400]
-
corespondență dintre variabile. Variabilele trebuie să fie omogene, astfel încât calculul distanței dintre categorii să aibă semnificație. Reprezentarea geometrică a categoriilor: calculul distanțelor dintre punctetc "Reprezentarea geometrică a categoriilor\: calculul distanțelor dintre puncte" Analiza de corespondență realizează separat câte o reprezentare geometrică pentru fiecare dintre cele două variabile puse în corespondență. În cele ce urmează vom descrie procedura pentru variabila reprezentată pe linii, X. Distanța dintre două categorii se calculează pornind de la profilurile categoriilor. Așa cum am arătat mai sus, fiecare categorie poate
[Corola-publishinghouse/Science/2075_a_3400]
-
fiecare dimensiune. Acest lucru este dat de contribuția dimensiunilor la puncte, care arată cât din inerția unui punct este explicat de o dimensiune. Valoarea sa depinde de masa punctului. Aceste contribuții poartă numele de corelații pătrate (squared correlations), din cauza interpretării geometrice care le poate fi dată, și anume pătratul cosinusului unghiului format de linia centroid - punct și axele dimensiunilor. Așa cum am văzut, distanțele și coordonatele sunt calculate separat pentru fiecare variabilă. Soluția finală va include ambele seturi de puncte într-un
[Corola-publishinghouse/Science/2075_a_3400]
-
de laborator, autoritatea sanitar-veterinară locală va preleva probe pentru efectuarea analizelor de laborator; 2. ori de câte ori se consideră necesar, DSVSA pot dispune creșterea frecvenței inspecțiilor și a recoltărilor de probe în vederea eliminării riscului pentru sănătatea publică, sănătatea animalelor sau mediu. *** media geometrică calculată pe o perioadă de 2 luni, cu prelevarea a 2 probe/lună; **** media geometrică calculată pe o perioadă de 3 luni, cu prelevarea unei singure probe/lună. Secțiunea a 3-a CONTROLUL OFICIAL ÎN UNITĂȚILE ÎNREGISTRATE SANITAR-VETERINAR g) lapte
EUR-Lex () [Corola-website/Law/211336_a_212665]