1,232 matches
-
de la ~10 mm Hg în venule până aproape de zero (presiunea atmosferică) în atrii. 16. Circulația limfatică Sistemul limfatic este o cale derivată de drenaj a lichidului interstițial, care este în relație de schimb cu plasma la nivelul capilarelor sanguine, prin difuziune dar și în masă, conform echilibrului Starling (filtrare la nivelul capilarelor arteriale și reabsorbție la nivelul capilarelor venoase). Elementele componente sunt: vasele limfatice (capilare, vene, colectoare limfatice) și ganglioni limfatici. Limfa se formeaza din lichidul interstițial la nivelul capilarelor limfatice
Fiziologie umană: funcțiile vegetative by Ionela Lăcrămioara Serban, Walther Bild, Dragomir Nicolae Serban () [Corola-publishinghouse/Science/1306_a_2286]
-
la țesutul înconjurator prin filamente de ancorare și nu sunt solidare între ele; marginile se suprapun, funcționând ca microvalve. Debitul limfatic total, de ~120 ml/h reprezintă ~10% din totalul ratei de filtrare capilară a plasmei sanguine (1/100 din difuziunea plasmei prin peretele capilar); în efort debitul limfatic crește de 10-30 ori. Debitul limfatic este determinat de presiunea interstițială; la câine crește de 12 de ori între -6 si 0 mm Hg și de înca 7 ori între 0 și
Fiziologie umană: funcțiile vegetative by Ionela Lăcrămioara Serban, Walther Bild, Dragomir Nicolae Serban () [Corola-publishinghouse/Science/1306_a_2286]
-
în LCR unde eliberează H+, care stimulează chemoreceptorii. Ca urmare a acestui fenomen se produce hiperventilație, care reduce pCO2 în sânge, în consecință și în LCR (fig. 76). Vasodilatația cerebrală care însoțește creșterea pCO2 în sângele arterial crește rata de difuziune a bioxidului de carbon în LCR și în lichidul extracelular de la nivelul creierului. LCR conține mult mai puține proteine decât sângele, deci are o capacitate de tamponare mult mai mică. In condițiile în care pH-ul normal al LCR este
Fiziologie umană: funcțiile vegetative by Ionela Lăcrămioara Serban, Walther Bild, Dragomir Nicolae Serban () [Corola-publishinghouse/Science/1306_a_2286]
-
apărare generală împotriva agresiunilor aerogene (particule solide de diverse dimensiuni), o apărare antimicrobiană (detectarea și atacul asupra agențilo microbieni și altor substanțe cu proprietăți antigenice, stimularea funcției fagocitare a macrofagelor), epurarea substanțelor volatile din sânge, dar permite și absorbția prin difuziune a unor substanțe prezente în aerul inhalat (fapt extrem de important în administrarea de medicamente sub formă de aerosoli). Epurarea substanțelor volatile din sânge este posibilă datorită permeabilității membranei alveolo-capilare pentru aceaste substanțe. Este cunoscut faptul că halena respiratorie constituie o
Fiziologie umană: funcțiile vegetative by Ionela Lăcrămioara Serban, Walther Bild, Dragomir Nicolae Serban () [Corola-publishinghouse/Science/1306_a_2286]
-
Evenimentele implicate în transportul bioxidului de carbon în sânge au efect foarte important asupra statusului acidobazic din organism. 20.3. Schimbul de gaze respiratorii la nivel tisular Oxigenul și bioxidul de carbon se deplasează între sângele capilar și țesuturi prin difuziune din regiunile cu presiuni mari în zonele cu presiuni mici (tab. 12). Principiul care guvernează difuziunea este legea Fick; trebuie subliniat că distanța care va fi acoperită prin difuziune în țesuturile periferice este considerabil mai mare decât în plămân. De
Fiziologie umană: funcțiile vegetative by Ionela Lăcrămioara Serban, Walther Bild, Dragomir Nicolae Serban () [Corola-publishinghouse/Science/1306_a_2286]
-
din organism. 20.3. Schimbul de gaze respiratorii la nivel tisular Oxigenul și bioxidul de carbon se deplasează între sângele capilar și țesuturi prin difuziune din regiunile cu presiuni mari în zonele cu presiuni mici (tab. 12). Principiul care guvernează difuziunea este legea Fick; trebuie subliniat că distanța care va fi acoperită prin difuziune în țesuturile periferice este considerabil mai mare decât în plămân. De exemplu, distanța între capilarele deschise în mușchiul în repaus este de 50 μm, pe când grosimea barierei
Fiziologie umană: funcțiile vegetative by Ionela Lăcrămioara Serban, Walther Bild, Dragomir Nicolae Serban () [Corola-publishinghouse/Science/1306_a_2286]
-
bioxidul de carbon se deplasează între sângele capilar și țesuturi prin difuziune din regiunile cu presiuni mari în zonele cu presiuni mici (tab. 12). Principiul care guvernează difuziunea este legea Fick; trebuie subliniat că distanța care va fi acoperită prin difuziune în țesuturile periferice este considerabil mai mare decât în plămân. De exemplu, distanța între capilarele deschise în mușchiul în repaus este de 50 μm, pe când grosimea barierei sânge-gaz în plămân este numai de 1/100 din aceasta. Pe de altă
Fiziologie umană: funcțiile vegetative by Ionela Lăcrămioara Serban, Walther Bild, Dragomir Nicolae Serban () [Corola-publishinghouse/Science/1306_a_2286]
-
este de 50 μm, pe când grosimea barierei sânge-gaz în plămân este numai de 1/100 din aceasta. Pe de altă parte, în timpul efortului, când consumul de oxigen din țesutul muscular este crescut, creșterea numărului de capilare deschise reduce distanța de difuziune și crește suprafața parietală capilară disponibilă pentru difuziune. Bioxidul de carbon difuzează de ~ 20 ori mai rapid decât oxigenul în țesut, eliminarea bioxidului de carbon reprezintă o problemă minoră în comparație cu eliberarea de oxigen. Măsurători in vitro sugerează că mișcarea oxigenului
Fiziologie umană: funcțiile vegetative by Ionela Lăcrămioara Serban, Walther Bild, Dragomir Nicolae Serban () [Corola-publishinghouse/Science/1306_a_2286]
-
în plămân este numai de 1/100 din aceasta. Pe de altă parte, în timpul efortului, când consumul de oxigen din țesutul muscular este crescut, creșterea numărului de capilare deschise reduce distanța de difuziune și crește suprafața parietală capilară disponibilă pentru difuziune. Bioxidul de carbon difuzează de ~ 20 ori mai rapid decât oxigenul în țesut, eliminarea bioxidului de carbon reprezintă o problemă minoră în comparație cu eliberarea de oxigen. Măsurători in vitro sugerează că mișcarea oxigenului prin anumite țesuturi este prea rapidă pentru a
Fiziologie umană: funcțiile vegetative by Ionela Lăcrămioara Serban, Walther Bild, Dragomir Nicolae Serban () [Corola-publishinghouse/Science/1306_a_2286]
-
carbon difuzează de ~ 20 ori mai rapid decât oxigenul în țesut, eliminarea bioxidului de carbon reprezintă o problemă minoră în comparație cu eliberarea de oxigen. Măsurători in vitro sugerează că mișcarea oxigenului prin anumite țesuturi este prea rapidă pentru a fi atribuită difuziunii pasive simple; este posibil să fie implicat, în anumite condiții, procesul de difuziune facilitată; în miocite un transportor ar putea fi mioglobina. Alte posibilități sunt procesele convective (de amestec) care au loc la scară redusă. Schimbul de gaze are loc
Fiziologie umană: funcțiile vegetative by Ionela Lăcrămioara Serban, Walther Bild, Dragomir Nicolae Serban () [Corola-publishinghouse/Science/1306_a_2286]
-
de carbon reprezintă o problemă minoră în comparație cu eliberarea de oxigen. Măsurători in vitro sugerează că mișcarea oxigenului prin anumite țesuturi este prea rapidă pentru a fi atribuită difuziunii pasive simple; este posibil să fie implicat, în anumite condiții, procesul de difuziune facilitată; în miocite un transportor ar putea fi mioglobina. Alte posibilități sunt procesele convective (de amestec) care au loc la scară redusă. Schimbul de gaze are loc la nivelul capilarelor tisulare (fig. 89, după West D. J.), după cum urmează: sângele
Fiziologie umană: funcțiile vegetative by Ionela Lăcrămioara Serban, Walther Bild, Dragomir Nicolae Serban () [Corola-publishinghouse/Science/1306_a_2286]
-
J.), după cum urmează: sângele arterial cedează O2 necesar activităților celulare și preia bioxidul de carbon rezultat în urma metabolismului celular. Schimbul tisular de gaze la se desfășoară prin peretele capilar, lichidul interstițial și membrana celulară și constă în procese fizice de difuziune a gazelor respiratorii ca urmare a gradientelor de presiune parțială între sectoarele traversate. Factorii de care depinde rata de difuziune (D) sunt cuprinși în ecuația Fick, . Schimbul gazos al O2 depinde de viteza de transport a O2 din sânge spre
Fiziologie umană: funcțiile vegetative by Ionela Lăcrămioara Serban, Walther Bild, Dragomir Nicolae Serban () [Corola-publishinghouse/Science/1306_a_2286]
-
tisular de gaze la se desfășoară prin peretele capilar, lichidul interstițial și membrana celulară și constă în procese fizice de difuziune a gazelor respiratorii ca urmare a gradientelor de presiune parțială între sectoarele traversate. Factorii de care depinde rata de difuziune (D) sunt cuprinși în ecuația Fick, . Schimbul gazos al O2 depinde de viteza de transport a O2 din sânge spre țesuturi și de inensitatea proceselor de utilizare a acestuia. Gradientul mare de presiune capilar - interstițiu (55 - 60 mm Hg) determina
Fiziologie umană: funcțiile vegetative by Ionela Lăcrămioara Serban, Walther Bild, Dragomir Nicolae Serban () [Corola-publishinghouse/Science/1306_a_2286]
-
D) sunt cuprinși în ecuația Fick, . Schimbul gazos al O2 depinde de viteza de transport a O2 din sânge spre țesuturi și de inensitatea proceselor de utilizare a acestuia. Gradientul mare de presiune capilar - interstițiu (55 - 60 mm Hg) determina difuziunea rapidă a O2. Schimburile gazoase se realizează extrem de rapid pentru CO2 în comparație cu oxigenul, cu toate că gradientul de presiune dintre capilar și interstițiu este de numai 5 - 6 mm Hg, datorită difuzibilității mari a bioxidului de carbon. Valoarea pCO2 depinde de debitul
Fiziologie umană: funcțiile vegetative by Ionela Lăcrămioara Serban, Walther Bild, Dragomir Nicolae Serban () [Corola-publishinghouse/Science/1306_a_2286]
-
mare pentru ionii de K+ decât pentru ionii de Na+, aceștia difuzează în sens invers și în măsură inegală prin membrana celulară realizând modificarea gradientului de concentrație a membranei. La baza distribuției ionice inegale stau reacții de transfer transmembranar prin difuziune, permeabilitate selectivă și transport ionic activ contra gradientului de concentrație. Spre deosebire de procesele pasive de difuziune care contribuie majoritar la scurgerea în afara celulei a ionilor de K+ și la realizarea potențialului membranar de repaus, permeabilitatea selectivă a Na+ prin canale ionice
Sistemul nervos vegetativ Anatomie, fiziologie, fiziopatologie by I. HAULICĂ () [Corola-publishinghouse/Science/100988_a_102280]
-
și în măsură inegală prin membrana celulară realizând modificarea gradientului de concentrație a membranei. La baza distribuției ionice inegale stau reacții de transfer transmembranar prin difuziune, permeabilitate selectivă și transport ionic activ contra gradientului de concentrație. Spre deosebire de procesele pasive de difuziune care contribuie majoritar la scurgerea în afara celulei a ionilor de K+ și la realizarea potențialului membranar de repaus, permeabilitatea selectivă a Na+ prin canale ionice cu poartă sau fără poartă, întregește diferența de încărcare ionică a membranelor. Ionii de Na
Sistemul nervos vegetativ Anatomie, fiziologie, fiziopatologie by I. HAULICĂ () [Corola-publishinghouse/Science/100988_a_102280]
-
Postpotențialul pozitiv de revenire la valoarea de repaus a potențialului transmembranar (fig. 24). Atât excesul intracelular al ionilor de sodiu cât și deficitul creat de pierderea potasiului sunt contracarate de intervenția pompei active membranare [ATP-aza(Na+-K+)]. În afara canalelor de difuziune și a contribuției suplimentare a ATP-azei (Na+-K+) la realizarea potențialului de repaus, canalele de sodiu și potasiu reglate electric prin voltaj (voltaj-dependente) sunt necesare atât depolarizării, cât și repolarizării membranare a fibrelor nervoase în timpul derulării potențialului de acțiune. Activarea
Sistemul nervos vegetativ Anatomie, fiziologie, fiziopatologie by I. HAULICĂ () [Corola-publishinghouse/Science/100988_a_102280]
-
la potențialul membranar de repaus după câteva fracțiuni de milisecundă. De precizat că în timpul fazei de repaus, conductanța ca fenomen de membrană este pentru ionii de potasiu de 50-100 ori mai mare decât pentru ionii de sodiu. Faptul se datorează difuziunii mult mai accentuate a ionilor de potasiu prin canalele de difuziune în comparație cu ionii de sodiu. Un rol important în generarea fenomenelor electrice neuronale revine anionilor nedifuzibili cu sarcini electrice negative precum și ionilor de Ca2+. Anionii negativi nedifuzibili includ moleculele proteinelor
Sistemul nervos vegetativ Anatomie, fiziologie, fiziopatologie by I. HAULICĂ () [Corola-publishinghouse/Science/100988_a_102280]
-
precizat că în timpul fazei de repaus, conductanța ca fenomen de membrană este pentru ionii de potasiu de 50-100 ori mai mare decât pentru ionii de sodiu. Faptul se datorează difuziunii mult mai accentuate a ionilor de potasiu prin canalele de difuziune în comparație cu ionii de sodiu. Un rol important în generarea fenomenelor electrice neuronale revine anionilor nedifuzibili cu sarcini electrice negative precum și ionilor de Ca2+. Anionii negativi nedifuzibili includ moleculele proteinelor și altor compuși organici celulari care conțin fosfați, sulfați etc., responsabili
Sistemul nervos vegetativ Anatomie, fiziologie, fiziopatologie by I. HAULICĂ () [Corola-publishinghouse/Science/100988_a_102280]
-
cele postganglionare este de 1/196. Această disproporție între neuronii pre- și postganglionari este mai mare în cazul ganglionilor simpatici, realizând difuzia și amplificarea majorității efectelor simpatico-adrenergice periferice. Diseminarea poate fi obținută prin: sinapsele multiple ale fibrelor preganglionare; medierea interneuronilor; difuziunea la nivelul ganglionului a unor substanțe transmițătoare; acțiunea unor produse locale (efect paracrin) sau printr-un răspuns local al unor substanțe produse la distanță (efect endocrin). În cazul căii eferente parasimpatice, fibrele preganglionare merg fie pe traiectul nervilor cranieni oculomotor
Sistemul nervos vegetativ Anatomie, fiziologie, fiziopatologie by I. HAULICĂ () [Corola-publishinghouse/Science/100988_a_102280]
-
în neuroni, putând prezenta o depolarizare ușoară, concomitent cu spike-ul activității neuronale locale. Ele sunt selectiv permeabile pentru potasiu, acționând ca electrozi de potasiu. Se știe că potasiul extracelular intervine în activitatea sinaptică. Îndepărtarea experimentală a unor teci gliale permite difuziunea excesului de potasiu extracelular la distanță de procesele neuronale, micșorând astfel efectul potasiului. Ipoteza intervenției celulelor gliale în menținerea sau modificarea potasiului extracelular a fost confirmată de cercetările lui Trachtenberg și Pollen (1970), care au demonstrat captarea excesului de potasiu
Sistemul nervos vegetativ Anatomie, fiziologie, fiziopatologie by I. HAULICĂ () [Corola-publishinghouse/Science/100988_a_102280]
-
etc.). În linii mari, etapele transmiterii sinaptice neuronale sunt următoarele: Potențial de acțiune a neuronului presinaptic ß Depolarizarea membranei plasmatice a terminației axonului presinaptic ß Intrarea calciului în terminația presinaptică ß Eliberarea cuantală a transmițătorului din butonul terminației presinaptice ß Difuziunea și fixarea transmițătorului pe receptorii specifici aflați la nivelul membranei plasmatice a celulei postsinaptice ß Modificarea conductanței membranei plasmatice postsinaptice pentru anumiți ioni ß Realizarea potențialului membranar al celulei postsinaptice ß Răspuns electric celular postsinaptic de tip excitator sau inhibitor
Sistemul nervos vegetativ Anatomie, fiziologie, fiziopatologie by I. HAULICĂ () [Corola-publishinghouse/Science/100988_a_102280]
-
unui factor depolarizant se realizează în două faze. Faza inițială este cauzată de inversarea gradientelor ionice membranare, produsă de creșterea rapidă a permeabilității canalelor de Na+ voltaj-dependente. Ca urmare a activării canalelor rapide de Na+ voltaj-dependente, are loc deplasarea prin difuziune a acestuia și acumularea sa în axoplasmă, dublată de inversarea încărcării electrice a membranei și de apariția bruscă a potențialului de vârf (overshoot pozitiv), caracteristic fenomenului de depolarizare cu valoare de 110 mV (fig. 34). Faza a doua a potențialului
Sistemul nervos vegetativ Anatomie, fiziologie, fiziopatologie by I. HAULICĂ () [Corola-publishinghouse/Science/100988_a_102280]
-
Aceștia intervin însă în mod indirect (așa cum se va vedea în subcapitolul următor), prin acțiunea lor asupra potențialului electric membranar sau a ionilor de calciu. I.5.1.5. Fenomene postsinaptice După eliberarea în fanta sinaptică, neurotransmițătorul se deplasează prin difuziune spre teritoriul postsinaptic în vederea recunoașterii și fixării pe receptorii specifici, a căror activare asigură transmiterea mesajului neuroefector corespunzător. Datorită proceselor fizice de difuzie și diluție în lichidul extracelular sinaptic, dublate de un oarecare grad de inactivare, numai o parte din
Sistemul nervos vegetativ Anatomie, fiziologie, fiziopatologie by I. HAULICĂ () [Corola-publishinghouse/Science/100988_a_102280]
-
având ca mediatori chimici oxidul nitric, monoxidul de carbon și hidrogenul sulfurat implicați atât în neurotransmiterea anterogradă, cât și în cea retrogradă. Fiind gaze ușor difuzibile prin membranele celulare, acestea sunt implicate și în comunicarea interneuronală non-sinaptică gazoasă prin simplă difuziune atât centrală, cât și periferică. În cele ce urmează vor fi succint expuse substanțele biologic active cu statut cert sau potențial de mediatori chimici sau de neuromodulatori ai răspunsurilor celulare postsinaptice. Principalele substanțe endogene care își dispută candidatura la calitatea
Sistemul nervos vegetativ Anatomie, fiziologie, fiziopatologie by I. HAULICĂ () [Corola-publishinghouse/Science/100988_a_102280]