672 matches
-
să presupunem "k" > 1. Probabilitatea ca un neutron să cauzeze o nouă fisiune este "k" / 3. Probabilitatea ca un neutron liber să nu cauzeze o reacție în lanț este (1 - "k" / 3) (nici o fisiune) plus probabilitatea a cel puțin o fisiune, atâta timp cât nici unul dintre cei trei neutroni produși nu cauzează o reacție în lanț. Ultima are probabilitatea de "k" / 3 ori cubul primei probabilități menționate că un neutro liber nu cauzează o reacție în lanț. Această ecuație poate fi rezolvată ușor
Reacție nucleară în lanț () [Corola-website/Science/304271_a_305600]
-
unei arme nucleare presupune aducerea foarte rapidă a materialului fisil în starea sa supercritică optimă. Pe durata acestui proces sistemul este supercritic dar nu încă în starea optimă pentru o reacție în lanț. Neutronii liberi, în particular cei proveniți din fisiuni spontane, pot cauza predetonarea. Pentru a respecta legea probabilității, durata acestei perioada este minimizată și se folosesc materiale fisionabile și alte materiale pentru care nu există prea multe fisiuni spontane. În fapt, combinația trebuie să fie astfel aleasă încât să
Reacție nucleară în lanț () [Corola-website/Science/304271_a_305600]
-
o reacție în lanț. Neutronii liberi, în particular cei proveniți din fisiuni spontane, pot cauza predetonarea. Pentru a respecta legea probabilității, durata acestei perioada este minimizată și se folosesc materiale fisionabile și alte materiale pentru care nu există prea multe fisiuni spontane. În fapt, combinația trebuie să fie astfel aleasă încât să nu existe nici o fisiune spontană pe durata fabricației (asamblării). În particular, metoda detonării nu poate fi folosită cu plutoniu. Conceptul de reacție de fisiune nucleară în lanț a fost
Reacție nucleară în lanț () [Corola-website/Science/304271_a_305600]
-
predetonarea. Pentru a respecta legea probabilității, durata acestei perioada este minimizată și se folosesc materiale fisionabile și alte materiale pentru care nu există prea multe fisiuni spontane. În fapt, combinația trebuie să fie astfel aleasă încât să nu existe nici o fisiune spontană pe durata fabricației (asamblării). În particular, metoda detonării nu poate fi folosită cu plutoniu. Conceptul de reacție de fisiune nucleară în lanț a fost dezvoltat de Leo Szilard în 1933, pentru care a solicitat, în anul următor, un patent
Reacție nucleară în lanț () [Corola-website/Science/304271_a_305600]
-
care nu există prea multe fisiuni spontane. În fapt, combinația trebuie să fie astfel aleasă încât să nu existe nici o fisiune spontană pe durata fabricației (asamblării). În particular, metoda detonării nu poate fi folosită cu plutoniu. Conceptul de reacție de fisiune nucleară în lanț a fost dezvoltat de Leo Szilard în 1933, pentru care a solicitat, în anul următor, un patent de invenție. În 1936 Leo Szilard a încercat să obțină o reacție în lanț folosind beriliu și indiu, dar a
Reacție nucleară în lanț () [Corola-website/Science/304271_a_305600]
-
Un reactor nuclear este o instalație tehnologică în care are loc o reacție de fisiune nucleară în lanț în condiții controlate, astfel încât să poată fi valorificată căldura generată sau utilizate fascicolele de neutroni . Reactoarele nucleare au trei tipuri de aplicații. Enrico Fermi și Leo Szilard, ambii de la University of Chicago, au fost primii care au
Reactor nuclear () [Corola-website/Science/304286_a_305615]
-
reactor nuclear din SUA a fost utilizat pentru a produce plutoniu pentru arma nucleară. Alte reactoare au fost folosite în propulsia navală (submarine, nave militare). Pe 20 Decembrie 1951, în SUA, a fost generat pentru prima dată curent electric folosind fisiunea nucleară la Reactorul rapid experimental (EBR-1) localizat lângă Arco, statul Idaho. Pe 26 Iunie 1954 a început să genereze curent electric reactorul nuclear de la Obninsk. Alți reactori de putere au început să funcționeze la Calder Hall în 1956 și Shippingport
Reactor nuclear () [Corola-website/Science/304286_a_305615]
-
genereze o putere de netă de 500MW, adică de zece ori puterea consumată. Se estimează că instalația ITER va fi operațională în 2020, urmând ca un prototip comercial de reactor cu fuziune să fie operațional în 2040 . Reactoarele nucleare de fisiune, indiferent de destinația lor, au următoarele elemente comune: Combustibilul nuclear Reacția de fisiune în lanț are loc în combustibilul nuclear. Aproape toate reactoarele nucleare utilizează uraniul drept combustibil. Reactoarele comerciale, cu câteva excepții, utilizează uraniul îmbogățit 2-5% în izotopul U235
Reactor nuclear () [Corola-website/Science/304286_a_305615]
-
Se estimează că instalația ITER va fi operațională în 2020, urmând ca un prototip comercial de reactor cu fuziune să fie operațional în 2040 . Reactoarele nucleare de fisiune, indiferent de destinația lor, au următoarele elemente comune: Combustibilul nuclear Reacția de fisiune în lanț are loc în combustibilul nuclear. Aproape toate reactoarele nucleare utilizează uraniul drept combustibil. Reactoarele comerciale, cu câteva excepții, utilizează uraniul îmbogățit 2-5% în izotopul U235. Unele reactoare utilizează un combustibil ce conține pe lângă uranium și plutoniu MOX), un
Reactor nuclear () [Corola-website/Science/304286_a_305615]
-
U235. Unele reactoare utilizează un combustibil ce conține pe lângă uranium și plutoniu MOX), un alt element fisionabil. Combustibilul și structura mecanică în care este acesta așezat formează zona activă (inima) reactorului. Moderatorul Moderatorul este necesar pentru încetinirea neutronilor rezultați din fisiune (neutron termici) pentru a le crește eficiența de producere a unor noi reacții de fisiune. Moderatorul trebuie să fie un element ușor care permite neutronilor să se ciocnească fără a fi capturați. Ca moderatori se utilizează apa obișnuită, apa grea
Reactor nuclear () [Corola-website/Science/304286_a_305615]
-
element fisionabil. Combustibilul și structura mecanică în care este acesta așezat formează zona activă (inima) reactorului. Moderatorul Moderatorul este necesar pentru încetinirea neutronilor rezultați din fisiune (neutron termici) pentru a le crește eficiența de producere a unor noi reacții de fisiune. Moderatorul trebuie să fie un element ușor care permite neutronilor să se ciocnească fără a fi capturați. Ca moderatori se utilizează apa obișnuită, apa grea (deuterium) sau grafitul. Agentul de răcire Pentru a menține temperatura combustibilului în limite tehnic acceptabile
Reactor nuclear () [Corola-website/Science/304286_a_305615]
-
care permite neutronilor să se ciocnească fără a fi capturați. Ca moderatori se utilizează apa obișnuită, apa grea (deuterium) sau grafitul. Agentul de răcire Pentru a menține temperatura combustibilului în limite tehnic acceptabile (sub punctul de topire) căldura eliberată prin fisiune sau prin dezintegrarea radioactivă trebuie extrasă din reactor cu ajutorul unui agent de răcire (apa obișnuită, apa grea, dioxid de carbon, heliu, metale topite, etc). Căldura preluată și transferată de agentul de răcire poate alimenta o turbină pentru a genera electricitate
Reactor nuclear () [Corola-website/Science/304286_a_305615]
-
pentru a genera electricitate. Barele de control Barele de control sunt realizate din material ce absorb neutronii precum: borul, argintul, indiul, cadmiul si hafniul. Ele sunt introduse în reactor pentru a reduce numărul de neutroni și a opri reacția de fisiune când este necesar, sau pentru a regla nivelul și distribuția spațială a puterii din reactor. Alte componente Unele reactoare au zona activă învelită cu un reflector care are scopul de a returna neutronii ce părăsesc reactorul și a maximiza utilizarea
Reactor nuclear () [Corola-website/Science/304286_a_305615]
-
părăsesc reactorul și a maximiza utilizarea lor eficientă. Adesea agentul de răcire și/sau moderatorul au și rolul de reflector. Zona activă și reflectorul sunt dispuse în interiorul unui vas rezistent la presiune (vasul reactorului). Pentru reducerea nivelului radiațiilor produse prin fisiune, zona activă este înconjurată de ecrane groase ce absorb radiațiile: beton, apă obișnuită, plumb, etc. Controlul și reglarea funcționării reactorului se realizează cu ajutorul a numeroase instrumente și sisteme de suport logistic care monitorizează (urmăresc) temperatura, presiunea, nivelul de radiație, nivelul
Reactor nuclear () [Corola-website/Science/304286_a_305615]
-
pentru a produce abur. Aburul acționează o turbină producând electricitate. Reactoarele nucleare se pot clasifica în funcție de tipul de reacție nucleară folosit, de materialele folosite la construcția instalației, de utilizarea energiei produse și de stadiul de dezvoltare a tehnologiei. - reactoare de fisiune (cu neutroni termici sau cu neutroni rapizi) - reactoare de fuziune - reactoare cu combustibil solid (oxid de uraniu, oxid plutoniu, oxid de toriu sau combinații) - reactoare cu combustibil lichid (săruri topite de uraniu sau de toriu) - reactoare cu apă ușoară; - reactoare
Reactor nuclear () [Corola-website/Science/304286_a_305615]
-
de abur simplifică proiectul dar produce contaminarea turbinei. Reactorul cu apă grea sub presiune - PHWR Ca și la reactorul PWR, la acest reactor agentul de răcire (apa grea) circulă prin generatori de abur unde energia termică preluată din reacția de fisiune este trasferată apei ordinare care fierbe producând abur. Reactorul PHWR are o structură particulară constând din vasul moderatorului (CALANDRIA) menținut la presiune și temperatură scăzută, care este străbătut de tuburi ce conțin combustibilul și prin care circulă apa grea de
Reactor nuclear () [Corola-website/Science/304286_a_305615]
-
reactor cu apă în fierbere moderat cu grafit și având o structură cu tuburi de presiune similară cu CANDU. Un astfel de reactor a explodat la Cernobâl cu consecințele cunoscute. Reactorul rapid - FBR Reactorul rapid funcționează pe baza reacției de fisiune cu neutroni rapizi. Reacția de fisiune cu neutroni rapizi eliberează mai mulți neutroni decât cea cu neutroni termici. Excesul de neutroni este folosit pentru transmutarea U238 sau a Th232 în izotopi fisionabili (Pu239 respectiv U233 ). Din acest motiv reactorii nu
Reactor nuclear () [Corola-website/Science/304286_a_305615]
-
cu grafit și având o structură cu tuburi de presiune similară cu CANDU. Un astfel de reactor a explodat la Cernobâl cu consecințele cunoscute. Reactorul rapid - FBR Reactorul rapid funcționează pe baza reacției de fisiune cu neutroni rapizi. Reacția de fisiune cu neutroni rapizi eliberează mai mulți neutroni decât cea cu neutroni termici. Excesul de neutroni este folosit pentru transmutarea U238 sau a Th232 în izotopi fisionabili (Pu239 respectiv U233 ). Din acest motiv reactorii nu neutroni rapizi se mai numesc și
Reactor nuclear () [Corola-website/Science/304286_a_305615]
-
U233 ). Din acest motiv reactorii nu neutroni rapizi se mai numesc și reproducători (generează mai mult material fisionabil decât consumă). Reactorii rapizi sunt răciți cu metale topite (sodiu,plumb) sau gaze(Heliu). Funcționarea reactorului nuclear se bazează pe reacția de fisiune indusă de neutroni prin care se eliberează energie, iar procesul poate fi controlat prin controlul numărului de neutroni disponibili. U235 + n → 2 fragmente de fisiune + 2 sau 3 neutroni + β, γ + energie Deoarece neutronii eliberați prin fisiune pot induce alte
Reactor nuclear () [Corola-website/Science/304286_a_305615]
-
metale topite (sodiu,plumb) sau gaze(Heliu). Funcționarea reactorului nuclear se bazează pe reacția de fisiune indusă de neutroni prin care se eliberează energie, iar procesul poate fi controlat prin controlul numărului de neutroni disponibili. U235 + n → 2 fragmente de fisiune + 2 sau 3 neutroni + β, γ + energie Deoarece neutronii eliberați prin fisiune pot induce alte fisiuni apare posibilitatea perpetuării reacției (fisiune în lanț). În condiții optime reacția de fisiune se menține la nivel constant și avem o reacție în lanț
Reactor nuclear () [Corola-website/Science/304286_a_305615]
-
pe reacția de fisiune indusă de neutroni prin care se eliberează energie, iar procesul poate fi controlat prin controlul numărului de neutroni disponibili. U235 + n → 2 fragmente de fisiune + 2 sau 3 neutroni + β, γ + energie Deoarece neutronii eliberați prin fisiune pot induce alte fisiuni apare posibilitatea perpetuării reacției (fisiune în lanț). În condiții optime reacția de fisiune se menține la nivel constant și avem o reacție în lanț controlată. Neutronii expulzați prin fisiune au o energie cinetică ce corespunde unei
Reactor nuclear () [Corola-website/Science/304286_a_305615]
-
indusă de neutroni prin care se eliberează energie, iar procesul poate fi controlat prin controlul numărului de neutroni disponibili. U235 + n → 2 fragmente de fisiune + 2 sau 3 neutroni + β, γ + energie Deoarece neutronii eliberați prin fisiune pot induce alte fisiuni apare posibilitatea perpetuării reacției (fisiune în lanț). În condiții optime reacția de fisiune se menține la nivel constant și avem o reacție în lanț controlată. Neutronii expulzați prin fisiune au o energie cinetică ce corespunde unei viteze de circa 13
Reactor nuclear () [Corola-website/Science/304286_a_305615]
-
se eliberează energie, iar procesul poate fi controlat prin controlul numărului de neutroni disponibili. U235 + n → 2 fragmente de fisiune + 2 sau 3 neutroni + β, γ + energie Deoarece neutronii eliberați prin fisiune pot induce alte fisiuni apare posibilitatea perpetuării reacției (fisiune în lanț). În condiții optime reacția de fisiune se menține la nivel constant și avem o reacție în lanț controlată. Neutronii expulzați prin fisiune au o energie cinetică ce corespunde unei viteze de circa 13 800 km/s (neutroni rapizi
Reactor nuclear () [Corola-website/Science/304286_a_305615]
-
prin controlul numărului de neutroni disponibili. U235 + n → 2 fragmente de fisiune + 2 sau 3 neutroni + β, γ + energie Deoarece neutronii eliberați prin fisiune pot induce alte fisiuni apare posibilitatea perpetuării reacției (fisiune în lanț). În condiții optime reacția de fisiune se menține la nivel constant și avem o reacție în lanț controlată. Neutronii expulzați prin fisiune au o energie cinetică ce corespunde unei viteze de circa 13 800 km/s (neutroni rapizi). Pentru a produce fisiunea uraniului 235neutronii trebuie să
Reactor nuclear () [Corola-website/Science/304286_a_305615]
-
β, γ + energie Deoarece neutronii eliberați prin fisiune pot induce alte fisiuni apare posibilitatea perpetuării reacției (fisiune în lanț). În condiții optime reacția de fisiune se menține la nivel constant și avem o reacție în lanț controlată. Neutronii expulzați prin fisiune au o energie cinetică ce corespunde unei viteze de circa 13 800 km/s (neutroni rapizi). Pentru a produce fisiunea uraniului 235neutronii trebuie să aibă energii mult mai mici, adică să fie în echilibru termic cu mediul înconjurător (neutroni termici
Reactor nuclear () [Corola-website/Science/304286_a_305615]