56,840 matches
-
Consecințe imediate ale electrodinamicii maxwelliene au fost afirmarea existenței undelor electromagnetice și constatarea că lumina e de natură electromagnetică și se propagă sub forma de astfel de unde. Unificarea fenomenelor electrice, magnetice și optice, ca manifestări ale unei realități fizice numită câmp electromagnetic, și semnificația de constantă fizică fundamentală pe care a căpătat-o viteza luminii în vid, au avut consecințe importante pe planul cunoașterii. Ele l-au îndrumat pe Einstein, o jumătate de secol mai târziu, către elaborarea teoriei relativității restrânse
Electrodinamică () [Corola-website/Science/327596_a_328925]
-
consecințe importante pe planul cunoașterii. Ele l-au îndrumat pe Einstein, o jumătate de secol mai târziu, către elaborarea teoriei relativității restrânse. Electrodinamica clasică dă o descriere cantitativă corectă a fenomenelor electromagnetice la scară macroscopică și la intensități mari ale câmpului. La scară microscopică, în procese ca emisia și absorbția de radiație de către sistemele atomice, câmpul electromagnetic manifestă însă o structură corpusculară: el apare ca fiind alcătuit din particule de masă zero numite fotoni. Completarea teoriei maxwelliene în conformitate cu principiile fizicii cuantice
Electrodinamică () [Corola-website/Science/327596_a_328925]
-
mai târziu, către elaborarea teoriei relativității restrânse. Electrodinamica clasică dă o descriere cantitativă corectă a fenomenelor electromagnetice la scară macroscopică și la intensități mari ale câmpului. La scară microscopică, în procese ca emisia și absorbția de radiație de către sistemele atomice, câmpul electromagnetic manifestă însă o structură corpusculară: el apare ca fiind alcătuit din particule de masă zero numite fotoni. Completarea teoriei maxwelliene în conformitate cu principiile fizicii cuantice a dus la teoria cuantică relativistă a interacțiunii electromagnetice: electrodinamica cuantică. Undele electromagnetice au fost
Electrodinamică () [Corola-website/Science/327596_a_328925]
-
doar pentru corpuri foarte masive, face ca interacțiunea electromagnetică să fie determinantă pentru proprietățile materiei la scară macroscopică. Manifestarea sa, sub forma unor forțe care acționează, în oricare punct din spațiu și în oricare moment, asupra materiei încărcate electric, constituie "câmpul electromagnetic". Noțiunea de câmp electromagnetic (opusă celei de "acțiune la distanță" din mecanica newtoniană) este o abstractizare și o precizare a noțiunii de "linii de forță", pe care Faraday le vedea ca realitate fizică: Într-o serie de trei memorii
Electrodinamică () [Corola-website/Science/327596_a_328925]
-
masive, face ca interacțiunea electromagnetică să fie determinantă pentru proprietățile materiei la scară macroscopică. Manifestarea sa, sub forma unor forțe care acționează, în oricare punct din spațiu și în oricare moment, asupra materiei încărcate electric, constituie "câmpul electromagnetic". Noțiunea de câmp electromagnetic (opusă celei de "acțiune la distanță" din mecanica newtoniană) este o abstractizare și o precizare a noțiunii de "linii de forță", pe care Faraday le vedea ca realitate fizică: Într-o serie de trei memorii, publicate între anii 1855-1864
Electrodinamică () [Corola-website/Science/327596_a_328925]
-
anii 1855-1864, Maxwell a analizat datele experimentale existente privitoare la electricitate și magnetism, adăugând datele experimentale privitoare la inducția electromagnetică obținute de Faraday, le-a reformulat teoretic și le-a completat cu o ipoteză teoretică proprie referitoare la efectul unui câmp electric variabil. Rezultatul a fost "O teorie dinamică a câmpului electromagnetic (A Dynamical Theory of the Electromagnetic Field)" — electrodinamica. O consecință importantă a cercetărilor lui Maxwell a fost constatarea că un câmp electromagnetic variabil în timp se propagă sub formă
Electrodinamică () [Corola-website/Science/327596_a_328925]
-
electricitate și magnetism, adăugând datele experimentale privitoare la inducția electromagnetică obținute de Faraday, le-a reformulat teoretic și le-a completat cu o ipoteză teoretică proprie referitoare la efectul unui câmp electric variabil. Rezultatul a fost "O teorie dinamică a câmpului electromagnetic (A Dynamical Theory of the Electromagnetic Field)" — electrodinamica. O consecință importantă a cercetărilor lui Maxwell a fost constatarea că un câmp electromagnetic variabil în timp se propagă sub formă de unde electromagnetice, cu o viteză egală (în limita preciziei datelor
Electrodinamică () [Corola-website/Science/327596_a_328925]
-
o ipoteză teoretică proprie referitoare la efectul unui câmp electric variabil. Rezultatul a fost "O teorie dinamică a câmpului electromagnetic (A Dynamical Theory of the Electromagnetic Field)" — electrodinamica. O consecință importantă a cercetărilor lui Maxwell a fost constatarea că un câmp electromagnetic variabil în timp se propagă sub formă de unde electromagnetice, cu o viteză egală (în limita preciziei datelor experimentale din vremea aceea) cu viteza luminii. Concluzia inevitabilă era că lumina constă din unde electromagnetice: Natura fizică a mediului care servea
Electrodinamică () [Corola-website/Science/327596_a_328925]
-
pentru propagarea undelor electromagnetice, denumit simbolic "eter luminifer", nu era precizată de teoria maxwelliană. Experimentul lui Michelson (1881), urmat de Experimentul Michelson-Morley (1887), care urmăreau să pună în evidență existența eterului, au dat rezultate negative. Ipoteza eterului a fost abandonată, câmpul electromagnetic a fost acceptat ca realitate fizică primară, viteza luminii în vid a devenit o constantă fizică fundamentală. Electrodinamica maxwelliană a generat o perspectivă nouă asupra desfășurării fenomenelor fizice în spațiu și în timp; ea a fost un element fundamental
Electrodinamică () [Corola-website/Science/327596_a_328925]
-
luminii în vid a devenit o constantă fizică fundamentală. Electrodinamica maxwelliană a generat o perspectivă nouă asupra desfășurării fenomenelor fizice în spațiu și în timp; ea a fost un element fundamental pentru Einstein în elaborarea teoriei relativității restrânse (1905). Sursele câmpului electromagnetic sunt sarcinile electrice elementare din materie: electroni încărcați negativ și protoni încărcați pozitiv. În electrodinamica clasică, la scară macroscopică, sarcina electrică apare însă distribuită continuu; distribuția e caracterizată prin densitatea de sarcină formula 1 și densitatea de curent formula 2, funcții
Electrodinamică () [Corola-website/Science/327596_a_328925]
-
clasică, la scară macroscopică, sarcina electrică apare însă distribuită continuu; distribuția e caracterizată prin densitatea de sarcină formula 1 și densitatea de curent formula 2, funcții de poziție și de timp. Legea conservării sarcinii electrice cere să fie satisfăcută ecuația de continuitate Câmpul electromagnetic e caracterizat cantitativ prin forța exercitată, în fiecare punct din spațiu și în fiecare moment, asupra unei sarcini sondă introdusă în câmp. Aceasta trebuie să fie suficient de mică și suficient de bine localizată, pentru a obține o măsură
Electrodinamică () [Corola-website/Science/327596_a_328925]
-
funcții de poziție și de timp. Legea conservării sarcinii electrice cere să fie satisfăcută ecuația de continuitate Câmpul electromagnetic e caracterizat cantitativ prin forța exercitată, în fiecare punct din spațiu și în fiecare moment, asupra unei sarcini sondă introdusă în câmp. Aceasta trebuie să fie suficient de mică și suficient de bine localizată, pentru a obține o măsură nedistorsionată și precisă a câmpului, la scară macroscopică. Se constată că forța e proporțională cu sarcina electrică formula 5 și depinde, pe lângă poziția formula 6
Electrodinamică () [Corola-website/Science/327596_a_328925]
-
prin forța exercitată, în fiecare punct din spațiu și în fiecare moment, asupra unei sarcini sondă introdusă în câmp. Aceasta trebuie să fie suficient de mică și suficient de bine localizată, pentru a obține o măsură nedistorsionată și precisă a câmpului, la scară macroscopică. Se constată că forța e proporțională cu sarcina electrică formula 5 și depinde, pe lângă poziția formula 6, și de viteza formula 7 a sondei. Ea poate fi parametrizată în forma numită forța Lorentz. Câmpurile vectoriale formula 10 și formula 11 se numesc
Electrodinamică () [Corola-website/Science/327596_a_328925]
-
o măsură nedistorsionată și precisă a câmpului, la scară macroscopică. Se constată că forța e proporțională cu sarcina electrică formula 5 și depinde, pe lângă poziția formula 6, și de viteza formula 7 a sondei. Ea poate fi parametrizată în forma numită forța Lorentz. Câmpurile vectoriale formula 10 și formula 11 se numesc, respectiv, "câmp electric" și "câmp magnetic"; ele alcătuiesc împreună câmpul electromagnetic. Definiția câmpului electromagnetic este completată cu "principiul superpoziției": dacă mai multe surse (distribuții de sarcini și curenți) sunt reunite, câmpul electromagnetic rezultant este
Electrodinamică () [Corola-website/Science/327596_a_328925]
-
scară macroscopică. Se constată că forța e proporțională cu sarcina electrică formula 5 și depinde, pe lângă poziția formula 6, și de viteza formula 7 a sondei. Ea poate fi parametrizată în forma numită forța Lorentz. Câmpurile vectoriale formula 10 și formula 11 se numesc, respectiv, "câmp electric" și "câmp magnetic"; ele alcătuiesc împreună câmpul electromagnetic. Definiția câmpului electromagnetic este completată cu "principiul superpoziției": dacă mai multe surse (distribuții de sarcini și curenți) sunt reunite, câmpul electromagnetic rezultant este suma câmpurilor produse de fiecare dintre surse, luată
Electrodinamică () [Corola-website/Science/327596_a_328925]
-
constată că forța e proporțională cu sarcina electrică formula 5 și depinde, pe lângă poziția formula 6, și de viteza formula 7 a sondei. Ea poate fi parametrizată în forma numită forța Lorentz. Câmpurile vectoriale formula 10 și formula 11 se numesc, respectiv, "câmp electric" și "câmp magnetic"; ele alcătuiesc împreună câmpul electromagnetic. Definiția câmpului electromagnetic este completată cu "principiul superpoziției": dacă mai multe surse (distribuții de sarcini și curenți) sunt reunite, câmpul electromagnetic rezultant este suma câmpurilor produse de fiecare dintre surse, luată separat. Principiile electrodinamicii
Electrodinamică () [Corola-website/Science/327596_a_328925]
-
cu sarcina electrică formula 5 și depinde, pe lângă poziția formula 6, și de viteza formula 7 a sondei. Ea poate fi parametrizată în forma numită forța Lorentz. Câmpurile vectoriale formula 10 și formula 11 se numesc, respectiv, "câmp electric" și "câmp magnetic"; ele alcătuiesc împreună câmpul electromagnetic. Definiția câmpului electromagnetic este completată cu "principiul superpoziției": dacă mai multe surse (distribuții de sarcini și curenți) sunt reunite, câmpul electromagnetic rezultant este suma câmpurilor produse de fiecare dintre surse, luată separat. Principiile electrodinamicii sunt exprimate cantitativ prin ecuații
Electrodinamică () [Corola-website/Science/327596_a_328925]
-
formula 5 și depinde, pe lângă poziția formula 6, și de viteza formula 7 a sondei. Ea poate fi parametrizată în forma numită forța Lorentz. Câmpurile vectoriale formula 10 și formula 11 se numesc, respectiv, "câmp electric" și "câmp magnetic"; ele alcătuiesc împreună câmpul electromagnetic. Definiția câmpului electromagnetic este completată cu "principiul superpoziției": dacă mai multe surse (distribuții de sarcini și curenți) sunt reunite, câmpul electromagnetic rezultant este suma câmpurilor produse de fiecare dintre surse, luată separat. Principiile electrodinamicii sunt exprimate cantitativ prin ecuații (diferențiale sau integrale
Electrodinamică () [Corola-website/Science/327596_a_328925]
-
numită forța Lorentz. Câmpurile vectoriale formula 10 și formula 11 se numesc, respectiv, "câmp electric" și "câmp magnetic"; ele alcătuiesc împreună câmpul electromagnetic. Definiția câmpului electromagnetic este completată cu "principiul superpoziției": dacă mai multe surse (distribuții de sarcini și curenți) sunt reunite, câmpul electromagnetic rezultant este suma câmpurilor produse de fiecare dintre surse, luată separat. Principiile electrodinamicii sunt exprimate cantitativ prin ecuații (diferențiale sau integrale) care leagă vectorii câmp electromagnetic de sursele lor. Dimensiunile fizice și valorile numerice ale coeficienților din aceste ecuații
Electrodinamică () [Corola-website/Science/327596_a_328925]
-
formula 10 și formula 11 se numesc, respectiv, "câmp electric" și "câmp magnetic"; ele alcătuiesc împreună câmpul electromagnetic. Definiția câmpului electromagnetic este completată cu "principiul superpoziției": dacă mai multe surse (distribuții de sarcini și curenți) sunt reunite, câmpul electromagnetic rezultant este suma câmpurilor produse de fiecare dintre surse, luată separat. Principiile electrodinamicii sunt exprimate cantitativ prin ecuații (diferențiale sau integrale) care leagă vectorii câmp electromagnetic de sursele lor. Dimensiunile fizice și valorile numerice ale coeficienților din aceste ecuații depind de sistemul de unități
Electrodinamică () [Corola-website/Science/327596_a_328925]
-
cu "principiul superpoziției": dacă mai multe surse (distribuții de sarcini și curenți) sunt reunite, câmpul electromagnetic rezultant este suma câmpurilor produse de fiecare dintre surse, luată separat. Principiile electrodinamicii sunt exprimate cantitativ prin ecuații (diferențiale sau integrale) care leagă vectorii câmp electromagnetic de sursele lor. Dimensiunile fizice și valorile numerice ale coeficienților din aceste ecuații depind de sistemul de unități de măsură utilizat. În sistemul internațional de unități, utilizat curent în aplicațiile electrodinamicii la scară macroscopică, intervin două mărimi fundamentale, definite
Electrodinamică () [Corola-website/Science/327596_a_328925]
-
vid, a cărei valoare e definită ca În studiile teoretice, în special în cele privind electrodinamica la scară microscopică, este preferat "sistemul de unități Gauss"; electrodinamica cuantică utilizează "sistemul de unități Heaviside-Lorentz". În 1864, Maxwell a formulat „ecuațiile generale ale câmpului electromagnetic” ca „douăzeci de ecuații” pentru „douăzeci de cantități variabile”, făcând observația: „Aceste ecuații sunt deci suficiente pentru a determina toate cantitățile care apar în ele, dacă ne sunt cunoscute condițiile problemei.” Ele au fost reformulate în 1884, după moartea
Electrodinamică () [Corola-website/Science/327596_a_328925]
-
făcând observația: „Aceste ecuații sunt deci suficiente pentru a determina toate cantitățile care apar în ele, dacă ne sunt cunoscute condițiile problemei.” Ele au fost reformulate în 1884, după moartea lui Maxwell, de Heaviside, pentru mărimile cu semnificație fizică directă (câmpul electric și câmpul magnetic), folosind notația compactă a analizei vectoriale. Ecuațiile lui Maxwell rezultă din formalizarea matematică a legilor experimentale din electrostatică și magnetostatică, completate cu rezultatele experimentale ale lui Faraday privind inducția electromagnetică și cu un termen adăugat de
Electrodinamică () [Corola-website/Science/327596_a_328925]
-
ecuații sunt deci suficiente pentru a determina toate cantitățile care apar în ele, dacă ne sunt cunoscute condițiile problemei.” Ele au fost reformulate în 1884, după moartea lui Maxwell, de Heaviside, pentru mărimile cu semnificație fizică directă (câmpul electric și câmpul magnetic), folosind notația compactă a analizei vectoriale. Ecuațiile lui Maxwell rezultă din formalizarea matematică a legilor experimentale din electrostatică și magnetostatică, completate cu rezultatele experimentale ale lui Faraday privind inducția electromagnetică și cu un termen adăugat de Maxwell, care le
Electrodinamică () [Corola-website/Science/327596_a_328925]
-
rezultă din formalizarea matematică a legilor experimentale din electrostatică și magnetostatică, completate cu rezultatele experimentale ale lui Faraday privind inducția electromagnetică și cu un termen adăugat de Maxwell, care le transformă într-un sistem coerent și complet. Ele permit determinarea câmpurilor formula 21 și formula 22 pentru o distribuție de sarcină formula 23 și curent formula 24 dată. În electrostatică, câmpul electric al unei sarcini statice punctiforme este dat de legea lui Coulomb. Pe baza principiului superpoziției, câmpul electric generat de o distribuție de sarcină
Electrodinamică () [Corola-website/Science/327596_a_328925]