3,093 matches
-
precum și generarea automată a unei secvențe de operații elementare.Orice limbaj de programare cuantic (QPL) util trebuie să fie : În timp ce primele trei specificații se aplică în egală măsură și pentru limbajele de programare tradiționale, QPL trebuie să reflecte particularitățile calcului cuantic:
Logică cuantică () [Corola-website/Science/335135_a_336464]
-
la trecerea (transformarea) energiei dintr-o forma în alta formă. De exemplu, energia potențială a unui pendul aflat în mișcare oscilatorie se transformă în energie cinetică, și invers. Legile conservării reprezintă noțiuni fundamentale ale fizicii, ale teoriei relativității și mecanicii cuantice. Variația energiei interne a unui sistem termodinamic, la trecerea lui dintr-o stare inițială dată, într-o stare finală dată, nu depinde de stările intermediare prin care trece sistemul, ci numai de stările inițială și finală: ΔU = U - U. Variația
Legea conservării energiei () [Corola-website/Science/317235_a_318564]
-
intensități ale tuturor celor trei culori primare reprezentate la fiecare pixel) de către un algoritm de demozaicare ce este croit pentru fiecare tip de filtru de culoare. Transmitanța spectrală a elementelor MFC alături de algoritmul de demozaicare determină împreună redarea culorilor. Randamentul cuantic al benzii de trecere a senzorului și anvergura sensibilității spectrale a MFC-ului sunt în mod tipic mai largi decât spectrul vizibil, așadar se pot distinge toate culorile vizibile. Sensibilitatea filtrelor nu corespunde în general cu funcțiile de potrivire a
Matrice de filtre de culoare () [Corola-website/Science/319618_a_320947]
-
proprietăților chimice asemănătoare pe care le au aceste elemente. Numărul maxim de electroni care se pot afla în stare f este, potrivit principiului excluziunii al lui Pauli, egal cu 2(2l+1)=2(2·3+1)=14 (unde pentru numărul cuantic cinetic s-a luat valoarea l=3), de aceea trebuie să fie 14 actinide cu proprietăți analoage actiniului. În notație spectroscopică, configurația electronică pentru starea fundamentală al atomului neutru de actiniu este prezentat mai jos, figura alăturată prezintă într-o
Actiniu () [Corola-website/Science/303164_a_304493]
-
orbitalul 7s, respectiv unicul electron din substratul d al păturii P reprezintă electronii de valență ai actiniului. Necompletarea substratului d interior al păturii P este o consecință a diferenței energetice a orbitalilor din straturile superioare în acord cu legile mecanicii cuantice. Substratul d incomplet este o caracteristică comună tuturor elementelor din seria actinidelor. Structura proprie a învelișului electronic al atomului Ac determină în mare parte proprietățile fizico-chimice ale speciei atomice. Asemănarea din punct de vedere al arajării electronilor în păturile electronice
Actiniu () [Corola-website/Science/303164_a_304493]
-
acelor întâmplări, aducându-le pe cursul dorit. Publicată în revista "Omni" în octombrie 1989, nuveleta a câștigat premiul Nebula, fiind nominalizată la premiile Hugo, SF Chronicle și ocupând locul 3 în sondajul Locus. Ea descrie o conferință internațională de fizică cuantică desfășurată la Rialto, în care toate principiile acestei ramuri ale fizicii se aplică evenimentelor și persoanelor reale, într-o exemplificare la scară mare. Nuvela a apărut în noiembrie 1999 în volumul "Mircales and Other Christmas Stories" și a fost nominalizată
Vânturile de la Marble Arch (culegere de povestiri) () [Corola-website/Science/330758_a_332087]
-
determină experimental sarcina electrică a electronului. În 1923, Johannes Nicolaus Brønsted (1879 - 1947) și Martin Lowry (1874 - 1936) elaborează teoria electrochimică a acizilor și a bazelor. În a doua jumătate a secolului al XX-lea apare și se devoltă electrochimia cuantică, rezultat al cercetărilor savantului gruzin Revaz Dogonadze (1931 - 1985) și ale colaboratorilor săi. La sfârșitul secolului al XVIII-lea și începutul secolului al XIX-lea se descoperă un număr mare de elemente chimice, dintre care: În 1869, chimistul rus Dimitri
Istoria chimiei () [Corola-website/Science/308466_a_309795]
-
1791 - 1867) descoperă radiația catodică, ceea ce conduce la studiul particulelor elementare. Fizicianul german Ludwig Boltzmann (1844 - 1906) sugerează posibilitatea ca energia unui sistem fizic să fie discretă, ceea ce îl determină pe Max Planck (1858 - 1947) să formuleze, în 1900, ipoteza cuantică. În 1927, fizicianul și chimistul american Robert S. Mulliken (1896 - 1986) împreună cu fizicianul german Friedrich Hund (1896 - 1997) elaborează "teoria orbitalului molecular". Americanul John C. Slater (1900 - 1976) introduce, în 1930, un model matematic bazat pe funcții exponențiale pentru descrierea
Istoria chimiei () [Corola-website/Science/308466_a_309795]
-
german Friedrich Hund (1896 - 1997) elaborează "teoria orbitalului molecular". Americanul John C. Slater (1900 - 1976) introduce, în 1930, un model matematic bazat pe funcții exponențiale pentru descrierea orbitalului atomic. Chimistul american Linus Pauling (1901 - 1994) se remarcă prin aplicarea mecanicii cuantice în chimie. Descoperirile sale au condus savanții britanici la determinarea structurii de dublă elice a moleculei de ADN. Descoperirea, în 1895, a razelor X de către Wilhelm Conrad Röntgen (1845 - 1923) și, un an mai târziu, a radioactivității uraniului de către Antoine
Istoria chimiei () [Corola-website/Science/308466_a_309795]
-
to See", Adams a scris două romane care conțin personaje noi. "Dirk Gently's Holistic Detective Agency" a apărut în 1987 și a fost descrisă de autor ca "un fel de gotic-horror-polițist-călătorie în timp-dragoste-comedie-epopee, focalizat pe noroi, muzică și mecanică cuantică". Cartea a primit multe recenzii excesiv de favorabile în ziarele americane. Adams a luat unele idei din scenariile "Doctor Who" la care a lucrat: "City of Death" și "Shada". Un an mai târziu a fost publicată continuarea romanului, "The Long Dark
Douglas Adams () [Corola-website/Science/299732_a_301061]
-
Matricile lui Pauli sunt un ansamblu formula 1 de trei matrici hermitice 2×2 care apar în teoria cuantică nerelativistă a particulelor de spin formula 2 cum este electronul. Ipoteza existenței unui moment cinetic al electronului, rezultând din rotația (în engleză: "spin") sarcinii electronice, a fost formulată în 1925 de Ralph Kronig. Ea a fost imediat criticată de Wolfgang Pauli
Spin ½ și matricile lui Pauli () [Corola-website/Science/329376_a_330705]
-
În anii următori, existența spinului electronului a fost acceptată, ca moment cinetic "intrinsec", diferit de momentul cinetic "orbital" (acesta din urmă fiind definit în raport cu poziția și impulsul particulei). Teoria spinului electronic a fost formulată în 1927 de Pauli, în cadrul mecanicii cuantice nerelativiste. În teoria cuantică relativistă, spinul formula 3 nu necesită o ipoteză specială: el rezultă, ca proprietate intrinsecă, din ecuația lui Dirac. Spinul electronului a oferit, "a posteriori", explicația rezultatelor obținute în experimentul Stern-Gerlach (1922) pentru momentul magnetic al electronului. Astăzi
Spin ½ și matricile lui Pauli () [Corola-website/Science/329376_a_330705]
-
spinului electronului a fost acceptată, ca moment cinetic "intrinsec", diferit de momentul cinetic "orbital" (acesta din urmă fiind definit în raport cu poziția și impulsul particulei). Teoria spinului electronic a fost formulată în 1927 de Pauli, în cadrul mecanicii cuantice nerelativiste. În teoria cuantică relativistă, spinul formula 3 nu necesită o ipoteză specială: el rezultă, ca proprietate intrinsecă, din ecuația lui Dirac. Spinul electronului a oferit, "a posteriori", explicația rezultatelor obținute în experimentul Stern-Gerlach (1922) pentru momentul magnetic al electronului. Astăzi, experimentul Stern-Gerlach este privit
Spin ½ și matricile lui Pauli () [Corola-website/Science/329376_a_330705]
-
de spin" formula 31, care poate lua două valori (de exemplu "plus" și "minus"), în funcție de proiecția spinului pe axa 3; ea poate fi scrisă în baza formula 19 sub forma Presupunând că este satisfăcută condiția de normare din formalismul general al mecanicii cuantice rezultă următoarea interpretare statistică: formula 35 reprezintă probabilitatea de localizare a electronului în elementul de volum formula 36 în jurul punctului cu vector de poziție formula 37 și având proiecția spinului pe axa 3 egală cu formula 38 La fel, formula 39 reprezintă probabilitatea de localizare
Spin ½ și matricile lui Pauli () [Corola-website/Science/329376_a_330705]
-
numește "spinor". Experimentul Stern-Gerlach și analiza făcută de Kronig, Uhlenbeck și Goudsmit au pus în evidență faptul că electronul (de masă formula 44 și sarcină electrică formula 45) posedă un "moment cinetic" intrinsec formula 46 cu care este asociat un "moment magnetic" Mecanica cuantică nerelativistă indică formula 48 în bun acord cu experimentul. Faptul că această valoare pentru factorul Landé este dublă față de valoarea formula 49 corespunzătoare momentului cinetic orbital este cunoscut ca „anomalia magnetică a spinului”. Corecțiile relativiste indică formula 50 în excelent acord cu determinări
Spin ½ și matricile lui Pauli () [Corola-website/Science/329376_a_330705]
-
Mecanica cuantică este teoria mișcării particulelor materiale la scară atomică. Ea a apărut, în primele decenii ale secolului XX, ca rezultat al unui efort colectiv de a înțelege fenomene care în fizica clasică nu-și găseau explicația: structura atomilor și interacția acestora
Mecanică cuantică () [Corola-website/Science/297814_a_299143]
-
materiale la scară atomică. Ea a apărut, în primele decenii ale secolului XX, ca rezultat al unui efort colectiv de a înțelege fenomene care în fizica clasică nu-și găseau explicația: structura atomilor și interacția acestora cu radiația electromagnetică. Mecanica cuantică nerelativistă a rezolvat problema structurii atomice; extinsă apoi pentru a ține seama de principiile teoriei relativității, ea a deschis drumul către teoria cuantică relativistă a radiației, numită electrodinamică cuantică. Denumirea de "mecanică cuantică" a fost păstrată pentru a indica teoria
Mecanică cuantică () [Corola-website/Science/297814_a_299143]
-
care în fizica clasică nu-și găseau explicația: structura atomilor și interacția acestora cu radiația electromagnetică. Mecanica cuantică nerelativistă a rezolvat problema structurii atomice; extinsă apoi pentru a ține seama de principiile teoriei relativității, ea a deschis drumul către teoria cuantică relativistă a radiației, numită electrodinamică cuantică. Denumirea de "mecanică cuantică" a fost păstrată pentru a indica teoria fenomenelor atomice din domeniul energiilor nerelativiste, în care numărul de particule rămâne constant; dezvoltările ulterioare, care studiază procese de creare și anihilare de
Mecanică cuantică () [Corola-website/Science/297814_a_299143]
-
găseau explicația: structura atomilor și interacția acestora cu radiația electromagnetică. Mecanica cuantică nerelativistă a rezolvat problema structurii atomice; extinsă apoi pentru a ține seama de principiile teoriei relativității, ea a deschis drumul către teoria cuantică relativistă a radiației, numită electrodinamică cuantică. Denumirea de "mecanică cuantică" a fost păstrată pentru a indica teoria fenomenelor atomice din domeniul energiilor nerelativiste, în care numărul de particule rămâne constant; dezvoltările ulterioare, care studiază procese de creare și anihilare de particule, se încadrează în "teoria cuantică
Mecanică cuantică () [Corola-website/Science/297814_a_299143]
-
și interacția acestora cu radiația electromagnetică. Mecanica cuantică nerelativistă a rezolvat problema structurii atomice; extinsă apoi pentru a ține seama de principiile teoriei relativității, ea a deschis drumul către teoria cuantică relativistă a radiației, numită electrodinamică cuantică. Denumirea de "mecanică cuantică" a fost păstrată pentru a indica teoria fenomenelor atomice din domeniul energiilor nerelativiste, în care numărul de particule rămâne constant; dezvoltările ulterioare, care studiază procese de creare și anihilare de particule, se încadrează în "teoria cuantică a câmpurilor" și are
Mecanică cuantică () [Corola-website/Science/297814_a_299143]
-
cuantică. Denumirea de "mecanică cuantică" a fost păstrată pentru a indica teoria fenomenelor atomice din domeniul energiilor nerelativiste, în care numărul de particule rămâne constant; dezvoltările ulterioare, care studiază procese de creare și anihilare de particule, se încadrează în "teoria cuantică a câmpurilor" și are legătură cu ramuri experimentale precum cea a fizicii nucleare și a particulelor elementare. Descrierea dată de mecanica cuantică realității la scară atomică este de natură statistică: ea nu se referă la un exemplar izolat al sistemului
Mecanică cuantică () [Corola-website/Science/297814_a_299143]
-
particule rămâne constant; dezvoltările ulterioare, care studiază procese de creare și anihilare de particule, se încadrează în "teoria cuantică a câmpurilor" și are legătură cu ramuri experimentale precum cea a fizicii nucleare și a particulelor elementare. Descrierea dată de mecanica cuantică realității la scară atomică este de natură statistică: ea nu se referă la un exemplar izolat al sistemului studiat, ci la un colectiv statistic alcătuit dintr-un număr mare de exemplare, aranjate în ansamblul statistic după anumite modele. Rezultatele ei
Mecanică cuantică () [Corola-website/Science/297814_a_299143]
-
caracter complementar, în sensul că ea constă din elemente care se completează reciproc într-o imagine unitară, din punctul de vedere macroscopic al fizicii clasice, numai dacă ele rezultă din situații experimentale care se exclud reciproc. Interpretarea statistică a mecanicii cuantice este în acord cu datele experimentale, însă persistă opinii divergente asupra caracterului fundamental al acestei descrieri. Pe când în interpretarea de la Copenhaga descrierea statistică este postulată ca fiind "completă", reflectând o caracteristică fundamentală a fenomenelor la scară atomică, teorii alternative susțin
Mecanică cuantică () [Corola-website/Science/297814_a_299143]
-
descrie în mod coerent, pe baza unor principii generale, cele două categorii de fenomene. Dificultățile pe care le-au întâmpinat aceste teorii în interpretarea interacțiunii dintre materie și radiație au stimulat dezvoltarea ideilor care, treptat, au dus la formularea mecanicii cuantice și apoi a electrodinamicii cuantice. În teoria radiației electromagnetice în echilibru termodinamic cu materia, distribuția spectrală a intensității radiației emise de un corp negru se afla în violent dezacord cu experiența. Planck (1900) a arătat că dificultatea putea fi ocolită
Mecanică cuantică () [Corola-website/Science/297814_a_299143]
-
baza unor principii generale, cele două categorii de fenomene. Dificultățile pe care le-au întâmpinat aceste teorii în interpretarea interacțiunii dintre materie și radiație au stimulat dezvoltarea ideilor care, treptat, au dus la formularea mecanicii cuantice și apoi a electrodinamicii cuantice. În teoria radiației electromagnetice în echilibru termodinamic cu materia, distribuția spectrală a intensității radiației emise de un corp negru se afla în violent dezacord cu experiența. Planck (1900) a arătat că dificultatea putea fi ocolită pe baza ipotezei că schimbul
Mecanică cuantică () [Corola-website/Science/297814_a_299143]