1,052 matches
-
Are o distanță de acțiune foarte scurtă, de circa 10 metri. În acest context, ea este o forță nucleară. În fizică nucleară forță nucleară tare ține quarkurile și gluonii împreună pentru a forma hadroni, adică barionii, care includ protonii și neutronii, precum și mezonii, adică kaonii, mezon rho, pionii, etc. Se considera că interacțiunea tare este mediata de gluoni care acționează asupra quarcurilor, anti-quarcurilor și împotriva gluonilor înșiși. Acest proces este detaliat în teoria cuantică cromodinamica(QCD). Înaintea anilor 1970, protonii și
Interacțiunea tare () [Corola-website/Science/299436_a_300765]
-
precum și mezonii, adică kaonii, mezon rho, pionii, etc. Se considera că interacțiunea tare este mediata de gluoni care acționează asupra quarcurilor, anti-quarcurilor și împotriva gluonilor înșiși. Acest proces este detaliat în teoria cuantică cromodinamica(QCD). Înaintea anilor 1970, protonii și neutronii erau considerați particule elementare indivizibile. Era cunoscut ca protonii purtau o sarcină electrică pozitivă. În ciuda faptului că respingerea electromagnetică realiza respingerea particulelor încărcate cu același fel de sarcină electrică, mai mulți protoni apăreau legați împreună în nucleele atomice cu neutroni
Interacțiunea tare () [Corola-website/Science/299436_a_300765]
-
neutronii erau considerați particule elementare indivizibile. Era cunoscut ca protonii purtau o sarcină electrică pozitivă. În ciuda faptului că respingerea electromagnetică realiza respingerea particulelor încărcate cu același fel de sarcină electrică, mai mulți protoni apăreau legați împreună în nucleele atomice cu neutroni cu sarcina zero, nu se știa mecanismul acestor legături. Mult mai tarziu s-a descoperit că protonii și neutronii nu erau particule fundamentale, ci erau constituite din alte particule, denumite quarcuri. Atracția puternică între nucleoni erau efectul secundar al unei
Interacțiunea tare () [Corola-website/Science/299436_a_300765]
-
electromagnetică realiza respingerea particulelor încărcate cu același fel de sarcină electrică, mai mulți protoni apăreau legați împreună în nucleele atomice cu neutroni cu sarcina zero, nu se știa mecanismul acestor legături. Mult mai tarziu s-a descoperit că protonii și neutronii nu erau particule fundamentale, ci erau constituite din alte particule, denumite quarcuri. Atracția puternică între nucleoni erau efectul secundar al unei forțe care țineau împreună quarcurile din protoni și neutroni. Teoria cuantică a cromodinamicii explică cum cuarcii poartă o caracteristică
Interacțiunea tare () [Corola-website/Science/299436_a_300765]
-
legături. Mult mai tarziu s-a descoperit că protonii și neutronii nu erau particule fundamentale, ci erau constituite din alte particule, denumite quarcuri. Atracția puternică între nucleoni erau efectul secundar al unei forțe care țineau împreună quarcurile din protoni și neutroni. Teoria cuantică a cromodinamicii explică cum cuarcii poartă o caracteristică numită culoare, deși nu are nici o legătură cu spectrul vizibil... În teoria cromodinamicii cuantice, interacțiunea puternică este descrisă, la fel că forța electromagnetică și interacțiunea slabă, prin intermediul schimbului de bosoni
Interacțiunea tare () [Corola-website/Science/299436_a_300765]
-
de aici rezultă și inexistentă quarcului liber.La energii de peste o anumita limită n ,intervine libertatea asimptotica iar la energii sub această intervine confiarea. Forța nucleară tare explică de ce nucleul atomic, alcătuit din protoni încarcați cu o sarcină pozitivă și neutronii neutri din punct de vedere electric, este destul de stabil. Spre deosebire de forță tare, forța nucleară descrește odată cu mărirea distanței dintre particule. În cadrul nucleului, forța nucleară are un caracter rezidual. Nucleonii au mereu sarcina de culoare egală cu zero. Cu toate acestea
Interacțiunea tare () [Corola-website/Science/299436_a_300765]
-
două forțe fundamentale explică coeziunea nucleelor atomice, dar și procesul de fisiune al nucleelor grele. Fenomenologic, interacțiunea puternică reziduala poate fi descrisă că un schimb de pioni. Un lucru care ajută la micșorarea repulsiei dintre protonii unui nucleu este prezentă neutronilor. Aceștia sunt neutri din punct de vedere electric și nu sunt respinși de către protoni. Neutronii participa la schimbul de mezoni în cadrul nucleului, creând o forță suficient de puternică pentru a depăși repulsiile electronice reciproce și nucleul să rămână stabil. Astfel
Interacțiunea tare () [Corola-website/Science/299436_a_300765]
-
Fenomenologic, interacțiunea puternică reziduala poate fi descrisă că un schimb de pioni. Un lucru care ajută la micșorarea repulsiei dintre protonii unui nucleu este prezentă neutronilor. Aceștia sunt neutri din punct de vedere electric și nu sunt respinși de către protoni. Neutronii participa la schimbul de mezoni în cadrul nucleului, creând o forță suficient de puternică pentru a depăși repulsiile electronice reciproce și nucleul să rămână stabil. Astfel, neutronii liberi penetrează ușor prin barieră electrostatica a nucleului, învingând repulsia prin schimbul de mezoni
Interacțiunea tare () [Corola-website/Science/299436_a_300765]
-
Aceștia sunt neutri din punct de vedere electric și nu sunt respinși de către protoni. Neutronii participa la schimbul de mezoni în cadrul nucleului, creând o forță suficient de puternică pentru a depăși repulsiile electronice reciproce și nucleul să rămână stabil. Astfel, neutronii liberi penetrează ușor prin barieră electrostatica a nucleului, învingând repulsia prin schimbul de mezoni, intrând astfel în componență nucleului.
Interacțiunea tare () [Corola-website/Science/299436_a_300765]
-
atinge masa supra-critică (metoda imploziei). Arma nucleară cu fuziune (arma termonucleară, bomba cu Hidrogen) folosește energia rezultată din fisiune pentru a comprima și încălzi deuteriul și tritiul până aceștia fuzionează. Există și arme nucleare cu destinații speciale precum arma cu neutroni sau arma cu contaminare radioactivă. Arma cu neutroni este o armă termonucleară construită special pentru a produce un flux mare de neutroni ce produce multe decese dar nu produce contaminare radioactivă și nu afectează construcțiile. Arma cu contaminare este o
Armă nucleară () [Corola-website/Science/298931_a_300260]
-
fuziune (arma termonucleară, bomba cu Hidrogen) folosește energia rezultată din fisiune pentru a comprima și încălzi deuteriul și tritiul până aceștia fuzionează. Există și arme nucleare cu destinații speciale precum arma cu neutroni sau arma cu contaminare radioactivă. Arma cu neutroni este o armă termonucleară construită special pentru a produce un flux mare de neutroni ce produce multe decese dar nu produce contaminare radioactivă și nu afectează construcțiile. Arma cu contaminare este o armă cu fisiune învelită cu un material (cobalt
Armă nucleară () [Corola-website/Science/298931_a_300260]
-
și încălzi deuteriul și tritiul până aceștia fuzionează. Există și arme nucleare cu destinații speciale precum arma cu neutroni sau arma cu contaminare radioactivă. Arma cu neutroni este o armă termonucleară construită special pentru a produce un flux mare de neutroni ce produce multe decese dar nu produce contaminare radioactivă și nu afectează construcțiile. Arma cu contaminare este o armă cu fisiune învelită cu un material (cobalt, aur) care produce o contaminare radioactivă extrem de puternică. Din punct de vedere al strategiei
Armă nucleară () [Corola-website/Science/298931_a_300260]
-
ul este particulă din nucleul atomic cu masa (m=1,675·10kg), neutră din punct de vedere electric (q=0 C). Numărul neutronilor, N, ai unui atom poate fi diferit pentru nucleele atomice ale aceluiași element. Așa se formează izotopii. A fost teoretizat de Ernest Rutherford în 1920 ca fiind un dublet neutru format din proton și electron. îi se pot găsi (în
Neutron () [Corola-website/Science/297812_a_299141]
-
aceluiași element. Așa se formează izotopii. A fost teoretizat de Ernest Rutherford în 1920 ca fiind un dublet neutru format din proton și electron. îi se pot găsi (în mișcare) și în afara atomului. Aceștia interacționează numai cu nucleele atomice. Pătrunderea neutronilor în nuclee are loc cu o probabilitate ridicată, mai ales atunci când energia lor cinetica este scăzută. Acest fenomen poate afecta stabilitatea atomului ("activare", "transformare" sau "stabilizare"). La trecerea neutronilor prin materie sunt posibile trei tipuri de interacții: "împrăștiere elastică", "împrăștiere
Neutron () [Corola-website/Science/297812_a_299141]
-
mișcare) și în afara atomului. Aceștia interacționează numai cu nucleele atomice. Pătrunderea neutronilor în nuclee are loc cu o probabilitate ridicată, mai ales atunci când energia lor cinetica este scăzută. Acest fenomen poate afecta stabilitatea atomului ("activare", "transformare" sau "stabilizare"). La trecerea neutronilor prin materie sunt posibile trei tipuri de interacții: "împrăștiere elastică", "împrăștiere inelastică" și "captura neutronica". Dacă un neutron se dezintegrează, acesta se separă într-un proton, un electron și un neutrin. Ajunși, prin ciocniri succesive, la energii joase și la
Neutron () [Corola-website/Science/297812_a_299141]
-
probabilitate ridicată, mai ales atunci când energia lor cinetica este scăzută. Acest fenomen poate afecta stabilitatea atomului ("activare", "transformare" sau "stabilizare"). La trecerea neutronilor prin materie sunt posibile trei tipuri de interacții: "împrăștiere elastică", "împrăștiere inelastică" și "captura neutronica". Dacă un neutron se dezintegrează, acesta se separă într-un proton, un electron și un neutrin. Ajunși, prin ciocniri succesive, la energii joase și la un grad ridicat de împrăștiere, neutronii se comportă ca un gaz molecular care difuzează. Materialele care încetinesc neutronii
Neutron () [Corola-website/Science/297812_a_299141]
-
tipuri de interacții: "împrăștiere elastică", "împrăștiere inelastică" și "captura neutronica". Dacă un neutron se dezintegrează, acesta se separă într-un proton, un electron și un neutrin. Ajunși, prin ciocniri succesive, la energii joase și la un grad ridicat de împrăștiere, neutronii se comportă ca un gaz molecular care difuzează. Materialele care încetinesc neutronii prin ciocniri elastice, fără a-i absorbi, poartă numele de "moderatori" (apă, deuteriu, beriliu, parafina, grafit). În 1931, Walther Bothe și Herbert Becker în Giessen, Germania au constatat
Neutron () [Corola-website/Science/297812_a_299141]
-
neutron se dezintegrează, acesta se separă într-un proton, un electron și un neutrin. Ajunși, prin ciocniri succesive, la energii joase și la un grad ridicat de împrăștiere, neutronii se comportă ca un gaz molecular care difuzează. Materialele care încetinesc neutronii prin ciocniri elastice, fără a-i absorbi, poartă numele de "moderatori" (apă, deuteriu, beriliu, parafina, grafit). În 1931, Walther Bothe și Herbert Becker în Giessen, Germania au constatat că în cazul în care particule alfa de mare energie emise de
Neutron () [Corola-website/Science/297812_a_299141]
-
care particule alfa de mare energie emise de poloniu au căzut pe anumite elemente ușoare, în special beriliu, bor sau litiu, o radiație neobișnuit de penetranta a fost produsă. Din moment ce aceasta radiație nu a fost influențată de un câmp electric (neutroni nu au sarcina), era considerată a fi gamma. Radiația era mai penetranta decât orice raze gamma cunoscute, iar detaliile privind rezultatele experimentale erau dificil de interpretat. Anul următor Irène Joliot-Curie și Frédéric Joliot în Paris, au arătat că, dacă aceasta
Neutron () [Corola-website/Science/297812_a_299141]
-
radiație necunoscută a căzut pe parafina, sau orice alt compus cu hidrogen, ea ejecta protoni de energie foarte mare. Auzind rezultatelor de la Paris, în 1932, nici Rutherford, nici [James Chadwick]] au fost convinși de ipoteză razelor gamma. Chadwick a căutat neutronii lui Rutherford prin mai multe experimente de-a lungul anilor 1920, fără succes. Chadwick a realizat rapid o serie de experimente care arata ca ipoteza razelor gamma era de neconceput. El a repetat producerea radiației folosind beriliu, a utilizat metode
Neutron () [Corola-website/Science/297812_a_299141]
-
radiației folosind beriliu, a utilizat metode mai bune pentru detectare, si care vizează radiația în parafina ca urmare a experimentului de la Paris. Parafina este un compus cu conținut ridicat de hidrogen, prin urmare, oferă o țintă densă de protoni; din moment ce neutronii și protonii au masă aproape egală, protoni se împrăștie de neutroni. Chadwick a măsurat gamă acestor protoni, si, de asemenea a măsurat modul în care nouă radiație afecta atomii de diferite gaze. O țintă de beriliu bombardata cu particule alfa
Neutron () [Corola-website/Science/297812_a_299141]
-
care vizează radiația în parafina ca urmare a experimentului de la Paris. Parafina este un compus cu conținut ridicat de hidrogen, prin urmare, oferă o țintă densă de protoni; din moment ce neutronii și protonii au masă aproape egală, protoni se împrăștie de neutroni. Chadwick a măsurat gamă acestor protoni, si, de asemenea a măsurat modul în care nouă radiație afecta atomii de diferite gaze. O țintă de beriliu bombardata cu particule alfa emise de poloniu radioactiv, s-a constatat că emite, la rândul
Neutron () [Corola-website/Science/297812_a_299141]
-
a măsurat vitezele formulă 8. El a găsit că raportul formulă 9 era aproximativ 7,5. Prin urmare: formulă 10 Chadwick a repetat experiență cu alte substanțe și a găsit din nou masă aproximativ egală cu cea a protonului. El a dovedit existența neutronilor. În funcție de energia lor, neutronii pot fi clasificați astfel: Momentul magnetic e diferit de zero, fapt neașteptat pentru o particulă neutră electric. Acesta e un indiciu că neutronul e o particulă compusă. Ernest Rutherford a emis ipoteza alcătuirii neutronului dintr-un
Neutron () [Corola-website/Science/297812_a_299141]
-
El a găsit că raportul formulă 9 era aproximativ 7,5. Prin urmare: formulă 10 Chadwick a repetat experiență cu alte substanțe și a găsit din nou masă aproximativ egală cu cea a protonului. El a dovedit existența neutronilor. În funcție de energia lor, neutronii pot fi clasificați astfel: Momentul magnetic e diferit de zero, fapt neașteptat pentru o particulă neutră electric. Acesta e un indiciu că neutronul e o particulă compusă. Ernest Rutherford a emis ipoteza alcătuirii neutronului dintr-un proton și un electron
Neutron () [Corola-website/Science/297812_a_299141]
-
din nou masă aproximativ egală cu cea a protonului. El a dovedit existența neutronilor. În funcție de energia lor, neutronii pot fi clasificați astfel: Momentul magnetic e diferit de zero, fapt neașteptat pentru o particulă neutră electric. Acesta e un indiciu că neutronul e o particulă compusă. Ernest Rutherford a emis ipoteza alcătuirii neutronului dintr-un proton și un electron. După Modelul Standard al particulelor elementare neutronul ar fi compus din quarci. Distingerea între cele două modele se poate face prin predicțiile cantitative
Neutron () [Corola-website/Science/297812_a_299141]