6,471 matches
-
În astronomie și cosmologie, materia întunecată este în prezent un tip necunoscut de materie despre care se consideră că ar conține o mare parte din masa totală a universului. nu emite și nici nu absoarbe lumina sau radiațiile electromagnetice sau de altă natură, și deci nu poate fi observată direct cu telescoapele. Se estimează că materia întunecată constituie 83% din materia din univers și 23% din masa-energia sa. Existența ei încă nu a putut fi dovedită pe cale experimentală din cauză că
Materia întunecată () [Corola-website/Science/309172_a_310501]
-
mai mic decât diametrul unui fir de păr. Forma originală a microscopiei electronice, microscopia electronică cu transmisie implica o rază de electroni la tensiune înaltă emisă de un catod, de regulă filament de tungsten, și focalizată de lentile electrostatice și electromagnetice. Raza de electroni care a fost transmisă printr-un specimen parțial transparent pentru electroni transportă informație despre structura internă a specimenului în raza care ajunge la sistemul de formare a imaginii. Variația spațială a acestei informații ("imaginea") este apoi mărită
Microscop electronic () [Corola-website/Science/310490_a_311819]
-
fost transmisă printr-un specimen parțial transparent pentru electroni transportă informație despre structura internă a specimenului în raza care ajunge la sistemul de formare a imaginii. Variația spațială a acestei informații ("imaginea") este apoi mărită de o serie de lentile electromagnetice până când este înregistrată la coliziunea cu un ecran fluorescent, placă fotografică, sau senzor de lumină cum ar fi un senzor CCD. Imaginea detectată de CCD poate fi afișată în timp real pe un monitor sau transmisă pe loc unui calculator
Microscop electronic () [Corola-website/Science/310490_a_311819]
-
Datorită echivalenței masă-energie, electronvoltul poate fi utilizat pentru exprimarea masei: În reacțiile care produc sau absorb fotoni, este utilă corespondența între energia fotonului și lungimea de undă a acestuia formula 1, unde λ este lungimea de undă, ν este frecvența radiației electromagnetice, "h" este constanta lui Planck și "c" este viteza luminii în vid. Valoarea "hc" exprimată în electronvolți-nanometru este: Altfel spus, un foton cu energie de 1 eV corespunde unei lungimi de undă de 1240 nm (deci se situează în spectrul
Electronvolt () [Corola-website/Science/310612_a_311941]
-
Radiația în infraroșu (IR) este o radiație electromagnetică a cărei lungime de undă este mai lungă decât cea a luminii vizibile (400-700 nm), dar mai scurtă decât cea a radiației terahertz (100 μm - 1 mm) și a microundelor (~ 30000 μm). Majoritatea radiației termice emise de către obiectele aflate la
Infraroșu () [Corola-website/Science/310798_a_312127]
-
radiază pe lungimea de unda de 10 micrometri. Utilizările civile includ analiza eficientiei termale, monitorizarea mediului înconjurător, inspectarea uzinelor industriale, detectarea temperaturii la distanță, comunicațiile fără fir pe distanțe scurte, spectrografie și meteorologie. Radiația infraroșie este un tip de radiație electromagnetică că și undele radio, radiația ultavioleta, razele X sau microundele. Lumină infraroșie aparține spectrului electromagnetic, fiind invizibilă ochiului uman însă oamenii o pot simți că și căldura. Orice cu temperatură de peste 5 grade Kelvin (-450 de grade Fahrenheit sau -268
Infraroșu () [Corola-website/Science/310798_a_312127]
-
mediului înconjurător, inspectarea uzinelor industriale, detectarea temperaturii la distanță, comunicațiile fără fir pe distanțe scurte, spectrografie și meteorologie. Radiația infraroșie este un tip de radiație electromagnetică că și undele radio, radiația ultavioleta, razele X sau microundele. Lumină infraroșie aparține spectrului electromagnetic, fiind invizibilă ochiului uman însă oamenii o pot simți că și căldura. Orice cu temperatură de peste 5 grade Kelvin (-450 de grade Fahrenheit sau -268 de grade Celsius) emite radiație infraroșie. Conform Agenției de Protecție a Mediului, un simpu bec
Infraroșu () [Corola-website/Science/310798_a_312127]
-
fierbinți din infraroșu apropiat sau spectrul vizibil este denumit "pirometrie". Termografia este utilizată în aplicații militare și industriale dar tehnologia apare și pe piața liberă sub forma camerelor cu termoviziune. Camerele cu termoviziune detectează radiația infraroșie cuprinsă în raza spectrului electromagnetic (aproximativ 900-14000 nm sau 0.9-14 μm ) și produce imaginile radiației respective. De când radiația infraroșie este emisă de către toate obiectele în funcție de temperatură lor, conform legii radiației "corpului absolut negru" termografia poate face posibil să vedem mediul cuiva cu sau
Infraroșu () [Corola-website/Science/310798_a_312127]
-
dintr-un up quark și două down quarkuri. Numărul de neutroni, determină izotopul elementului chimic. Masa neutronului este de 940 MeV. În interiorul atomului există un câmp electric în jurul nucleului. Protonii și neutronii (nucleoni) se află în interioriul nucleului. În câmpul electromagnetic se gaseste un număr Z de electroni pentru a se asigura neutralitatea electrică a nucleului. Dacă numărul electronilor nu este egal cu cel al protonilor, atunci este un ion, pozitiv sau negativ. Numărul nucleelor în atom determină masa atomică a
Fizică nucleară () [Corola-website/Science/308913_a_310242]
-
oglinzile sunt folosite pentru întreținerea personală, decorare și arhitectură. De asemenea, acestea sunt folosite în aparaturile științifice cum ar fi telescoapele și laserele. Sunt concepute pentru lumina vizibilă, însă în instrumentele optice acestea detectează alte lungimi de undă ale radiației electromagnetice. Termenul de „oglindă” își are originea prin derivare regresivă din verbul "a oglindi" (care provine din slavă veche - oglendati, cf. ). Într-o oglindă plană, un fascicul paralel de lumină își modifică direcția de propagare, rămănând paralel; imaginile formate de o
Oglindă () [Corola-website/Science/308900_a_310229]
-
de măsură pentru mărimile sarcină electrică, curent electric, câmp electric și câmp magnetic. Corespunzător diferitelor definiții adoptate pentru aceste unități, au rezultat versiuni diferite ale sistemului de unități CGS în electromagnetism: "sistemul de unități CGS electrostatic", "sistemul de unități CGS electromagnetic", "sistemul de unități Gauss" și "sistemul de unități Heaviside-Lorentz". În aplicații domină astăzi "sistemul internațional de unități" (SI), derivat din "sistemul de unități MKS", bazat pe unitățile mecanice metru, kilogram, secundă, și completat cu unități de măsură pentru celelalte mărimi
Sistemul de unități CGS în electromagnetism () [Corola-website/Science/309778_a_311107]
-
celelalte mărimi fizice fundamentale. În studiile teoretice continuă să fie folosite cu precădere sistemul Gauss și versiunea sa „raționalizată”, sistemul Heaviside-Lorentz. Sistemele de unități din mecanică se bazează pe trei mărimi fundamentale: lungime, masă și timp. Extinderea lor la fenomenele electromagnetice necesită definirea unor unități de măsură pentru câmpul electromagnetic (câmp electric și câmp magnetic) și pentru sursele acestuia (sarcină electrică și curent electric). În electrostatică, unitatea de sarcină electrică este definită pe baza legii lui Coulomb: "mărimea forței între două
Sistemul de unități CGS în electromagnetism () [Corola-website/Science/309778_a_311107]
-
fie folosite cu precădere sistemul Gauss și versiunea sa „raționalizată”, sistemul Heaviside-Lorentz. Sistemele de unități din mecanică se bazează pe trei mărimi fundamentale: lungime, masă și timp. Extinderea lor la fenomenele electromagnetice necesită definirea unor unități de măsură pentru câmpul electromagnetic (câmp electric și câmp magnetic) și pentru sursele acestuia (sarcină electrică și curent electric). În electrostatică, unitatea de sarcină electrică este definită pe baza legii lui Coulomb: "mărimea forței între două sarcini electrice statice punctiforme este direct proporțională cu produsul
Sistemul de unități CGS în electromagnetism () [Corola-website/Science/309778_a_311107]
-
distanța dintre ei": Odată definită unitatea de sarcină electrică, unitatea de câmp electric rezultă din definiția acestuia ca forța exercitată pe unitatea de sarcină statică. Unitatea de câmp magnetic rezultă stabilind raportul dintre intensitatea unui câmp electric generat prin inducție electromagnetică și intensitatea câmpului magnetic variabil care l-a produs, pe baza legii lui Faraday: "forța electromotoare indusă într-un circuit închis formula 3 este proporțională și de semn opus cu variația în timp a fluxului magnetic prin suprafața formula 4 delimitată de
Sistemul de unități CGS în electromagnetism () [Corola-website/Science/309778_a_311107]
-
formula 9 sunt definite cu un factor formula 15 la numitor, ceea ce simplifică ecuațiile fundamentale ale electrodinamicii. Tabelul rezumă valorile celor trei constante pentru sistemele de unități utilizate în electromagnetism. Tabelul rezumă ecuațiile fundamentale ale electrodinamicii (ecuațiile lui Maxwell) și definiția câmpului electromagnetic (forța Lorentz), folosind constantele electromagnetice definite anterior. Sistemele de unități utilizate curent sunt SI (în aplicații) și sistemul Gauss (în studii teoretice); în electrodinamica cuantică acesta din urmă cedează locul sistemului raționalizat Heaviside-Lorentz. Tabelul rezumă comparația între unitățile SI și
Sistemul de unități CGS în electromagnetism () [Corola-website/Science/309778_a_311107]
-
factor formula 15 la numitor, ceea ce simplifică ecuațiile fundamentale ale electrodinamicii. Tabelul rezumă valorile celor trei constante pentru sistemele de unități utilizate în electromagnetism. Tabelul rezumă ecuațiile fundamentale ale electrodinamicii (ecuațiile lui Maxwell) și definiția câmpului electromagnetic (forța Lorentz), folosind constantele electromagnetice definite anterior. Sistemele de unități utilizate curent sunt SI (în aplicații) și sistemul Gauss (în studii teoretice); în electrodinamica cuantică acesta din urmă cedează locul sistemului raționalizat Heaviside-Lorentz. Tabelul rezumă comparația între unitățile SI și Gauss, pentru mărimile mecanice și
Sistemul de unități CGS în electromagnetism () [Corola-website/Science/309778_a_311107]
-
definite anterior. Sistemele de unități utilizate curent sunt SI (în aplicații) și sistemul Gauss (în studii teoretice); în electrodinamica cuantică acesta din urmă cedează locul sistemului raționalizat Heaviside-Lorentz. Tabelul rezumă comparația între unitățile SI și Gauss, pentru mărimile mecanice și electromagnetice de bază.
Sistemul de unități CGS în electromagnetism () [Corola-website/Science/309778_a_311107]
-
În formalismul postnewtonian parametrizat, măsurătorile devierii luminii și a întârzierii gravitaționale determină un parametru numit formula 10, care codifică influența gravitației asupra geometriei spațiului. Una din mai multele analogii între gravitația de câmp slab și electromagnetism este aceea că, similar undelor electromagnetice, există unde gravitaționale: perturbații ale metricii spațiu-timpului care se propagă cu viteza luminii. Ipoteza existenței undelor gravitaționale a apărut pentru prima oară într-o lucrare cu titlul "Gravitationswellen" ("Unde gravitaționale"), publicată de către Einstein în anul 1918. Cel mai simplu tip
Teoria relativității generale () [Corola-website/Science/309426_a_310755]
-
600, LIGO (trei detectoare), TAMA 300 și VIRGO. Un detector spațial euro-american, LISA, este în dezvoltare, precursoarea ei fiind misiunea (LISA Pathfinder), aceasta urma a fie lansată la sfârșitul lui 2009. Observarea undelor gravitaționale promite să completeze observațiile din spectrul electromagnetic. Se așteaptă obținerea de informații despre găurile negre și despre alte obiecte dense, cum ar fi stelele neutronice și piticele albe, despre unele feluri de implozii supernova, și despre procesele ce se desfășurau la începutul genezei universului, inclusiv urmele unor
Teoria relativității generale () [Corola-website/Science/309426_a_310755]
-
galaxii, iar prezența lor a jucat un rol important în formarea galaxiilor și structurilor cosmice mai mari. Astronomic, cea mai importantă proprietate a obiectelor dense este aceea că furnizează un mecanism deosebit de eficient de conversie a energiei gravitaționale în energie electromagnetică. Acreția, căderea de praf sau materie gazoasă într-o gaură neagră stelară sau supermasivă, este considerată a fi răspunzătoare pentru câteva obiecte de o luminozitate spectaculoasă, în special câteva feluri de nuclee galactice active și de obiecte de dimensiunea stelelor
Teoria relativității generale () [Corola-website/Science/309426_a_310755]
-
cosmologice permit estimarea cantității totale de materie din univers, deși natura acestei materii rămâne parțial acoperită de mister. Aproximativ 90% din toată materia pare a fi așa-numita materie întunecată, care are masă (sau, echivalent, influență gravitațională), dar nu interacționează electromagnetic și, deci, nu poate fi observată direct. Nu există nicio descriere general acceptată pentru acest tip de materie, în cadrul fizicii particulelor sau altfel. Studii asupra deplasării spre roșu a supernovelor îndepărtate și măsurătorile asupra radiației cosmice de fond arată și
Teoria relativității generale () [Corola-website/Science/309426_a_310755]
-
obiect îndepărtat, se concentrează într-un punct (numit focar), și produce o imagine mărită. Deși se indică cu termenul „telescop”, de obicei, telescopul optic, care operează în frecvențele luminii vizibile, există, de asemenea, telescoape sensibile la alte frecvențe ale spectrului electromagnetic. După principiul de funcționare există două tipuri principale de telescoape optice: reflector și refractor. În telescopul reflector imaginea observată este reflectată de o oglindă intr-un sistem de prisme si apoi la o lentilă ocular, așezata de obicei pe partea
Telescop () [Corola-website/Science/304738_a_306067]
-
fost construit în 1608 de către danezul Hans Lippershey (circa 1570-1619): era unul reflector. Alte surse îi atribuie inventarea primului telescop lui Joan Roget, fabricant de ochelari din Girona, Catalonia, care a trăit în jurul anului 1600. Atmosfera Pământului absoarbe majoritatea radiației electromagnetice din spațiu, cu excepția luminii vizibile și undelor radio. Din acest motiv, observația de la sol este limitată la utilizarea de telescoape optice și de telescoape radio. Primele sunt plasate de preferință în locuri înalte sau izolate (munți, deșerturi, ...) cu scopul de
Telescop () [Corola-website/Science/304738_a_306067]
-
la utilizarea de telescoape optice și de telescoape radio. Primele sunt plasate de preferință în locuri înalte sau izolate (munți, deșerturi, ...) cu scopul de a reduce influența turbulențelor atmosferice și a poluării luminoase. Pentru observarea în benzile rămase ale spectrului electromagnetic (microunde, infraroșu, ultraviolete, raze X, raze gamma), care sunt absorbite de atmosferă, sunt folosite aproape exclusiv telescoape orbitale ori situate în baloane aerostatice la altitudine mare. Diferențe între un "telescop" și o lunetă astronomică: Trebuie semnalat riscul de confuzie în
Telescop () [Corola-website/Science/304738_a_306067]
-
radio supraconductoare folosite în laserele cu electroni liberi FLASH (rezultat al proiectului anulat aș acceleratorului linear TESLA) și XFEL sunt făcute din niobiu pur. Superconductori feroviari Sensibilitatea ridicată a bolometrilor nitrurii de niobiu supraconductori îi fac detectori ideali pentru radiația electromagnetică în bandă de frecvență THz. Acești detectori au fost testați la Telescopul Submilimetru Heinrich Hertz, la Telescopul Polului Sud, la Telescopul Receiver Lab, si la APEX, fiind curent utilizați în instrumentul HIFI de la Observatorul Spațial Herschel. În 2004, cercetătorii URFJ
Niobiu () [Corola-website/Science/304786_a_306115]