940 matches
-
amestec, în fotomultiplicatoare și alte aplicații unde este necesară o sensibilitate spectrală extinsă până în infraroșu. Energia unui foton poate fi transferată unui singur electron. Astfel, dacă energia fotonului este sub pragul de extragere a electronului din cristal, mărirea numărului de fotoni (intensificarea fluxului de lumină) nu poate ajuta la declanșarea efectului fotoelectric. I. Intensitatea curentului fotoelectric de saturație depinde direct proporțional de fluxul radiației electromagnetic de incidență când frecvența este constantă. II. Energia cinetică maximă a fotoelectronilor emiși este direct proporțională
Efect fotoelectric () [Corola-website/Science/299848_a_301177]
-
este mai mare sau egală decât o constantă de material numită "frecvența de prag" sau "pragul roșu". IV. Efectul fotoelectric extern este practic instantaneu.( Δt≈1 ns = 10^-9 s) Cantitativ, efectul fotoelectric se poate descrie folosind formula: unde Energia fotonului incident este "hf"; această energie se conservă: o parte se regăsește în rețeaua cristalină a metalului și o parte este transferată sub formă de energie cinetică electronului devenit liber. Dacă se notează cu formula 2 lucrul de extracție și cu formula 3
Efect fotoelectric () [Corola-website/Science/299848_a_301177]
-
este că acționează de asemenea asupra cuantelor câmpului sau, gluonii, din cauza sarcinii lor de culoare. De exemplu, un gluon verde-antiroșu poate absorbi un gluon albastru-antiverde pentru a deveni antiroșu-albastru. Acest fenomen este marginal în cazul altor tipuri de interacțiuni fundamentale: fotonul, de exemplu, nu este încărcat electric (de fapt, interacțiunea slabă are o caracteristică similară în privința sarcinilor "W +" și "W-", dar consecințele acestei interacțiuni sunt neglijabile). În cazul forței țări, această caracteristică rezultă într-un câmp foarte limitat pentru această forță
Interacțiunea tare () [Corola-website/Science/299436_a_300765]
-
continuu, ci în cantități discrete și indivizibile, pe care le-a numit "cuante de energie" (în = câtime, cantitate). Einstein (1905) a dus ideea un pas mai departe, postulând că un fascicul luminos constă dintr-un jet de particule (numite apoi fotoni), care reprezintă cuante de energie; pe această bază el a elaborat o teorie cantitativă a efectului fotoelectric, pe care teoria ondulatorie fusese incapabilă să-l explice. O confirmare ulterioară a teoriei fotonului în detrimentul teoriei ondulatorii a venit de la efectul Compton
Mecanică cuantică () [Corola-website/Science/297814_a_299143]
-
constă dintr-un jet de particule (numite apoi fotoni), care reprezintă cuante de energie; pe această bază el a elaborat o teorie cantitativă a efectului fotoelectric, pe care teoria ondulatorie fusese incapabilă să-l explice. O confirmare ulterioară a teoriei fotonului în detrimentul teoriei ondulatorii a venit de la efectul Compton (1924). Analiza experimentelor de interferență și difracție arată că lumina se propagă sub formă de unde; aspectul corpuscular se manifestă însă în procesul emisiei sau absorbției luminii de către materie. Acest caracter dual — corpuscular
Mecanică cuantică () [Corola-website/Science/297814_a_299143]
-
numele de "mecanică ondulatorie"; în anul următor tot Schrödinger a arătat că ea era echivalentă cu mecanica matricială a lui Heisenberg. Proprietățile ondulatorii ale electronilor au fost confirmate de experimentul Davisson-Germer (1927). La a cincea "Conferință Solvay" despre electroni și fotoni (1927), "mecanica cuantică" a fost consacrată ca teorie a materiei la scară atomică. Conferința a marcat și punctul culminant al unei dezbateri, care avea să dureze mai mulți ani, între Einstein (care atribuia caracterul statistic al mecanicii cuantice faptului că
Mecanică cuantică () [Corola-website/Science/297814_a_299143]
-
ale unei particule ipotetice având aceeași masă ca electronul dar sarcină electrică opusă. Particula a fost observată în camera cu ceață de Anderson (1932), care a numit-o pozitron. Posibilitatea creării/anihilării de perechi electron-pozitron, concomitent cu absorbția/emisia de fotoni, iese din cadrul mecanicii cuantice, în care numărul de particule materiale este considerat constant. Noua teorie a interacției dintre materie și radiație propusă de Dirac a fost numită de acesta "electrodinamică cuantică". Ea a fost elaborată în formă definitivă, ca teorie
Mecanică cuantică () [Corola-website/Science/297814_a_299143]
-
de particule materiale este considerat constant. Noua teorie a interacției dintre materie și radiație propusă de Dirac a fost numită de acesta "electrodinamică cuantică". Ea a fost elaborată în formă definitivă, ca teorie cuantică relativistă a interacției dintre electroni și fotoni, în mod independent, de Tomonaga, Schwinger și Feynman (1946-1949); echivalența celor trei formulări a fost demonstrată de Dyson (1949). În mecanica cuantică o stare dinamică a unui sistem atomic este descrisă cantitativ de o "funcție de stare" (numită, într-o formulare
Mecanică cuantică () [Corola-website/Science/297814_a_299143]
-
electronii unui atom sunt presupuși a orbita în jurul nucleului, dar că pot face acest lucru numai într-o mulțime finită de orbite, și ar putea sări între aceste orbite numai în salturi discrete de energie corespunzătoare absorbției sau radiației unui foton. Această cuantificare a fost folosită pentru a explica de ce orbitele electronilor sunt stabile (având în vedere că, în mod normal, sarcinile accelerate, inclusiv prin mișcare circulară, pierd energie cinetică care emisă sub formă de radiații electromagnetice, vezi "radiația de sincrotron
Atom () [Corola-website/Science/297795_a_299124]
-
a depăși respingerea——și a fuziona într-un singur nucleu. Fisiunea nucleară este procesul invers, provocarea divizării unui nucleu în două nuclee mai mici—de obicei, prin dezintegrare radioactivă. Nucleul poate fi modificat și prin bombardament cu particule subatomice sau fotoni de mare energie. Dacă aceasta modifică numărul de protoni din nucleu, atomul se transformă într-un alt element chimic. Dacă în urma unei reacții de fuziune masa nucleului este mai mică decât suma maselor particulelor separate, atunci diferența dintre aceste două
Atom () [Corola-website/Science/297795_a_299124]
-
mai multe structuri de inel sau de nod, și diferă unele de altele în dimensiune, formă și orientare. Fiecare orbital atomic corespunde unui anumit al electronului. Electronul își poate schimba starea la un nivel superior de energie prin absorbția unui foton cu energie suficientă pentru a-l trece într-o nouă stare cuantică. De asemenea, prin intermediul emisiei spontane, un electron dintr-o stare mai mare de energie poate scădea la o stare de energie mai mică, în timp ce radiază energia în exces
Atom () [Corola-website/Science/297795_a_299124]
-
pentru a-l trece într-o nouă stare cuantică. De asemenea, prin intermediul emisiei spontane, un electron dintr-o stare mai mare de energie poate scădea la o stare de energie mai mică, în timp ce radiază energia în exces sub forma unui foton. Aceste valorile caracteristice ale energiei, definite prin diferențele de energie ale stărilor cuantice, sunt responsabile pentru liniile spectrale atomice. Cantitatea de energie necesară pentru a elimina sau adăuga un electron— energia de legătură a electronului—este cu mult mai mică
Atom () [Corola-website/Science/297795_a_299124]
-
din nucleu, sau mai multe particule beta. O emisie gamma analogă care permite ca nucleele excitate să piardă energie într-un mod diferit, este — un proces care produce electroni cu viteză mare care nu sunt radiații beta, urmațide producerea de fotoni cu energie înaltă, care nu sunt radiații gamma. Câteva nuclee mari pot exploda în două sau mai multe fragmente încărcate electric de diferite mase, plus câțiva neutroni, într-o degradare numită fisiune nucleară spontană. Fiecare izotop radioactiv are o perioadă
Atom () [Corola-website/Science/297795_a_299124]
-
crește. Dependența energiei de ℓ este cauzată nu de potențialul electrostatic al nucleului, ci prin interacțiunea între electroni. Pentru ca un electron să , de exemplu de la starea fundamentală la primul nivel excitat (ionizare), acesta trebuie să absoarbă sau să emită un foton la o energie egală cu diferența de energie potențială între aceste niveluri, conform modelului lui Niels Bohr, care poate fi calculată cu precizie prin ecuația lui Schrödinger. Electronii trec între orbitali într-o manieră similară particulelor. De exemplu, dacă un
Atom () [Corola-website/Science/297795_a_299124]
-
o energie egală cu diferența de energie potențială între aceste niveluri, conform modelului lui Niels Bohr, care poate fi calculată cu precizie prin ecuația lui Schrödinger. Electronii trec între orbitali într-o manieră similară particulelor. De exemplu, dacă un singur foton ar lovi electronii, numai un singur electron și-ar schimba starea ca răspuns la foton; a se vedea proprietățile electornului. Energia emisă de un foton este proporțională cu frecvența sa, astfel încât aceste nivelurile de energie specifice apar ca benzi distincte
Atom () [Corola-website/Science/297795_a_299124]
-
Bohr, care poate fi calculată cu precizie prin ecuația lui Schrödinger. Electronii trec între orbitali într-o manieră similară particulelor. De exemplu, dacă un singur foton ar lovi electronii, numai un singur electron și-ar schimba starea ca răspuns la foton; a se vedea proprietățile electornului. Energia emisă de un foton este proporțională cu frecvența sa, astfel încât aceste nivelurile de energie specifice apar ca benzi distincte în cadrul spectrului electromagnetic. Fiecare element are un spectru caracteristic care depinde de sarcina nucleară, subînvelișurile
Atom () [Corola-website/Science/297795_a_299124]
-
Schrödinger. Electronii trec între orbitali într-o manieră similară particulelor. De exemplu, dacă un singur foton ar lovi electronii, numai un singur electron și-ar schimba starea ca răspuns la foton; a se vedea proprietățile electornului. Energia emisă de un foton este proporțională cu frecvența sa, astfel încât aceste nivelurile de energie specifice apar ca benzi distincte în cadrul spectrului electromagnetic. Fiecare element are un spectru caracteristic care depinde de sarcina nucleară, subînvelișurile ocupate de electroni, interacțiunile electromagnetice dintre electroni și de alți
Atom () [Corola-website/Science/297795_a_299124]
-
Fiecare element are un spectru caracteristic care depinde de sarcina nucleară, subînvelișurile ocupate de electroni, interacțiunile electromagnetice dintre electroni și de alți factori. Atunci când un spectru continuu de energie este trecut printr-un gaz sau printr-o plasmă, unii dintre fotoni sunt absorbiți de atomi, făcându-i pe electroni să-și schimbe nivelul de energie. Acești electroni excitați care rămân legați de atom emit spontan această energie sub forma unui foton, care se îndreaptă într-o direcție oarecare, și astfel coboară
Atom () [Corola-website/Science/297795_a_299124]
-
trecut printr-un gaz sau printr-o plasmă, unii dintre fotoni sunt absorbiți de atomi, făcându-i pe electroni să-și schimbe nivelul de energie. Acești electroni excitați care rămân legați de atom emit spontan această energie sub forma unui foton, care se îndreaptă într-o direcție oarecare, și astfel coboară înapoi la un nivel inferior de energie. Astfel, atomii se comportă ca un filtru care formează o serie de întunecate în producția de energie. (Un observator care vizualizează atomii dintr-
Atom () [Corola-website/Science/297795_a_299124]
-
comportă ca un filtru care formează o serie de întunecate în producția de energie. (Un observator care vizualizează atomii dintr-o perspectivă care nu include spectrul continuu în fundal vede, în schimb, o serie de linii de emisie produse de fotonii emiși de către atomi.) Măsurătorile spectroscopice măsurători ale intensității și lățimii liniilor spectrale atomice permit identificarea compoziției și proprietăților fizice ale unei substanțe. Examinarea atentă a liniilor spectrale relevă că unele prezintă o divizare a . Acest lucru se întâmplă din cauza , care
Atom () [Corola-website/Science/297795_a_299124]
-
multe linii spectrale. Prezența unui câmp electric extern poate provoca un nivel comparabil de divizare și deplasare a liniilor spectrale prin modificarea nivelurilor de energie ale electronilor, un fenomen numit . Dacă un electron legat este într-o stare excitată, un foton care interacționează cu el și are energie corespunzătoare poate provoca o emisie stimulată a unui foton cu nivelul de energie potrivit. Pentru ca acest lucru să apară, electronul trebuie să coboare la o stare de energie mai mică, astfel încât diferența de
Atom () [Corola-website/Science/297795_a_299124]
-
deplasare a liniilor spectrale prin modificarea nivelurilor de energie ale electronilor, un fenomen numit . Dacă un electron legat este într-o stare excitată, un foton care interacționează cu el și are energie corespunzătoare poate provoca o emisie stimulată a unui foton cu nivelul de energie potrivit. Pentru ca acest lucru să apară, electronul trebuie să coboare la o stare de energie mai mică, astfel încât diferența de energie să fie aceeași cu energia de fotonului cu care interacționează. Fotonii emiși și fotonii care
Atom () [Corola-website/Science/297795_a_299124]
-
corespunzătoare poate provoca o emisie stimulată a unui foton cu nivelul de energie potrivit. Pentru ca acest lucru să apară, electronul trebuie să coboare la o stare de energie mai mică, astfel încât diferența de energie să fie aceeași cu energia de fotonului cu care interacționează. Fotonii emiși și fotonii care interacționează pornesc apoi în paralel și în fază; adică, modelele de undă ale celor doi fotoni sunt sincronizate. Această proprietate fizică este folosit pentru a face lasere, care pot emite fascicule coerente
Atom () [Corola-website/Science/297795_a_299124]
-
emisie stimulată a unui foton cu nivelul de energie potrivit. Pentru ca acest lucru să apară, electronul trebuie să coboare la o stare de energie mai mică, astfel încât diferența de energie să fie aceeași cu energia de fotonului cu care interacționează. Fotonii emiși și fotonii care interacționează pornesc apoi în paralel și în fază; adică, modelele de undă ale celor doi fotoni sunt sincronizate. Această proprietate fizică este folosit pentru a face lasere, care pot emite fascicule coerente de lumină a căror
Atom () [Corola-website/Science/297795_a_299124]
-
unui foton cu nivelul de energie potrivit. Pentru ca acest lucru să apară, electronul trebuie să coboare la o stare de energie mai mică, astfel încât diferența de energie să fie aceeași cu energia de fotonului cu care interacționează. Fotonii emiși și fotonii care interacționează pornesc apoi în paralel și în fază; adică, modelele de undă ale celor doi fotoni sunt sincronizate. Această proprietate fizică este folosit pentru a face lasere, care pot emite fascicule coerente de lumină a căror energie este într-
Atom () [Corola-website/Science/297795_a_299124]