1,052 matches
-
dovedit existența neutronilor. În funcție de energia lor, neutronii pot fi clasificați astfel: Momentul magnetic e diferit de zero, fapt neașteptat pentru o particulă neutră electric. Acesta e un indiciu că neutronul e o particulă compusă. Ernest Rutherford a emis ipoteza alcătuirii neutronului dintr-un proton și un electron. După Modelul Standard al particulelor elementare neutronul ar fi compus din quarci. Distingerea între cele două modele se poate face prin predicțiile cantitative furnizate asupra valorii numerice a momentului magnetic. Interacțiile cu substanță amintite
Neutron () [Corola-website/Science/297812_a_299141]
-
e diferit de zero, fapt neașteptat pentru o particulă neutră electric. Acesta e un indiciu că neutronul e o particulă compusă. Ernest Rutherford a emis ipoteza alcătuirii neutronului dintr-un proton și un electron. După Modelul Standard al particulelor elementare neutronul ar fi compus din quarci. Distingerea între cele două modele se poate face prin predicțiile cantitative furnizate asupra valorii numerice a momentului magnetic. Interacțiile cu substanță amintite mai sus (captura neutronilor, împrăștierea elastică și inelastică) fac posibilă detecția lor. Surse
Neutron () [Corola-website/Science/297812_a_299141]
-
și un electron. După Modelul Standard al particulelor elementare neutronul ar fi compus din quarci. Distingerea între cele două modele se poate face prin predicțiile cantitative furnizate asupra valorii numerice a momentului magnetic. Interacțiile cu substanță amintite mai sus (captura neutronilor, împrăștierea elastică și inelastică) fac posibilă detecția lor. Surse de neutroni sunt reacțiile nucleare de fisiune sau produse de particule alfa. Fasciculele de neutroni sunt folosite la determinări de structură a stărilor de agregare prin împrăștiere elastică (difracție de neutroni
Neutron () [Corola-website/Science/297812_a_299141]
-
fi compus din quarci. Distingerea între cele două modele se poate face prin predicțiile cantitative furnizate asupra valorii numerice a momentului magnetic. Interacțiile cu substanță amintite mai sus (captura neutronilor, împrăștierea elastică și inelastică) fac posibilă detecția lor. Surse de neutroni sunt reacțiile nucleare de fisiune sau produse de particule alfa. Fasciculele de neutroni sunt folosite la determinări de structură a stărilor de agregare prin împrăștiere elastică (difracție de neutroni) și inelastică a neutronilor și producerea fisiunii nucleare.
Neutron () [Corola-website/Science/297812_a_299141]
-
predicțiile cantitative furnizate asupra valorii numerice a momentului magnetic. Interacțiile cu substanță amintite mai sus (captura neutronilor, împrăștierea elastică și inelastică) fac posibilă detecția lor. Surse de neutroni sunt reacțiile nucleare de fisiune sau produse de particule alfa. Fasciculele de neutroni sunt folosite la determinări de structură a stărilor de agregare prin împrăștiere elastică (difracție de neutroni) și inelastică a neutronilor și producerea fisiunii nucleare.
Neutron () [Corola-website/Science/297812_a_299141]
-
neutronilor, împrăștierea elastică și inelastică) fac posibilă detecția lor. Surse de neutroni sunt reacțiile nucleare de fisiune sau produse de particule alfa. Fasciculele de neutroni sunt folosite la determinări de structură a stărilor de agregare prin împrăștiere elastică (difracție de neutroni) și inelastică a neutronilor și producerea fisiunii nucleare.
Neutron () [Corola-website/Science/297812_a_299141]
-
inelastică) fac posibilă detecția lor. Surse de neutroni sunt reacțiile nucleare de fisiune sau produse de particule alfa. Fasciculele de neutroni sunt folosite la determinări de structură a stărilor de agregare prin împrăștiere elastică (difracție de neutroni) și inelastică a neutronilor și producerea fisiunii nucleare.
Neutron () [Corola-website/Science/297812_a_299141]
-
proprietăți fizice diferite). Cuvântul "izotop" provine din grecescul "isos" (egal) și "topos" (loc). Toți izotopii unui element chimic au în învelișul electronic același număr de electroni, iar nucleele lor au același număr de protoni; ceea ce este diferit reprezintă numărul de neutroni. În nomenclatura științifică, izotopii unui element se scriu prin adăugarea unei cratime între numele elementului și numărul său de masă, astfel: heliu-3, carbon-12, carbon-14, oxigen-18, uraniu-238, iar prescurtat se notează folosind simbolul elementului și numărul de masă în partea stângă
Izotop () [Corola-website/Science/297817_a_299146]
-
sunt cunoscuți. ii radioactivi artificiali, cunoscuți de asemenea ca radioizotopi, au fost produși pentru prima dată în 1933 de fizicienii francezi Marie și Pierre Joliot-Curie. Radioizotopii sunt produși pentru bombardarea naturală găsită a atomilor cu particulele nucleare, de asemenea ca neutronii, electronii, protonii, și particulele alfa, folosind particule acceleratorii. Separarea izotopică se bazează pe diferențele proprietăților fizico-chimice ale izotopilor aceluiași element (efectul izotopic). Efectul izotopic poate consta în diferențe ale punctului de fierbere sau de înghet, presiunii de vapori la o
Izotop () [Corola-website/Science/297817_a_299146]
-
explica și prezice mai acest comportament. Fiecare atom este format dintr-un nucleu și din unul sau mai mulți electroni legați de nucleu. Nucleul este format din unul sau mai mulți protoni și, de obicei, dintr-un număr similar de neutroni. Protonii și neutronii se numesc nucleoni. Peste 99,94% din masa unui atom este concentrată în nucleu. Protonii au sarcină electrică pozitivă, electronii au sarcină electrică negativă, iar neutronii nu au sarcină electrică. Dacă numărul de protoni este egal cu
Atom () [Corola-website/Science/297795_a_299124]
-
mai acest comportament. Fiecare atom este format dintr-un nucleu și din unul sau mai mulți electroni legați de nucleu. Nucleul este format din unul sau mai mulți protoni și, de obicei, dintr-un număr similar de neutroni. Protonii și neutronii se numesc nucleoni. Peste 99,94% din masa unui atom este concentrată în nucleu. Protonii au sarcină electrică pozitivă, electronii au sarcină electrică negativă, iar neutronii nu au sarcină electrică. Dacă numărul de protoni este egal cu cel de electroni
Atom () [Corola-website/Science/297795_a_299124]
-
mai mulți protoni și, de obicei, dintr-un număr similar de neutroni. Protonii și neutronii se numesc nucleoni. Peste 99,94% din masa unui atom este concentrată în nucleu. Protonii au sarcină electrică pozitivă, electronii au sarcină electrică negativă, iar neutronii nu au sarcină electrică. Dacă numărul de protoni este egal cu cel de electroni, atunci atomul este neutru din punct de vedere electric. Dacă un atom are mai mulți sau mai puțini electroni decât protoni, atunci acesta are un o
Atom () [Corola-website/Science/297795_a_299124]
-
atom are mai mulți sau mai puțini electroni decât protoni, atunci acesta are un o sarcină totală negativă, respectiv pozitivă, și se numește ion. Electronii unui atom sunt atrași de protonii din nucleul atomic de această forță electromagnetică. Protonii și neutronii din nucleu sunt atrași unul de celălalt printr-o altă forță, , care de obicei este mai puternică decât forța electromagnetică de respingere ce acționează între protonii încărcați pozitiv. În anumite circumstanțe, forța electromagnetică de respingere poate deveni mai puternică decât
Atom () [Corola-website/Science/297795_a_299124]
-
fi astfel scoși din nucleu, lăsând în urmă un element diferit: dezintegrarea nucleară rezultă în . Numărul de protoni din nucleu definește elementul chimic căruia îi aparține atomul: de exemplu, toți atomii de cupru atomi conțin 29 de protoni. Numărul de neutroni definește izotopul elementului. Numărul de electroni influențează proprietățile magnetice ale unui atom. Atomii se pot atașa de unul sau mai mulți alți atomi prin legături chimice pentru a forma compuși chimici, cum ar fi moleculele. Capacitatea atomilor de a se
Atom () [Corola-website/Science/297795_a_299124]
-
atom și sarcina sa. Chimistul Francis William Aston a folosit acest instrument pentru a arăta că izotopii au mase diferite. Masa atomică a acestor izotopi variază cu multipli întregi ai unei valori, denumită . Explicația pentru acești izotopi diferiți aștepta descoperirea neutronului, o particulă fără sarcină, cu o masă similară cu a protonului, de către fizicianul James Chadwick în 1932. Izotopii au fost atunci explicați ca elemente cu același număr de protoni, dar număr diferit de neutroni în nucleu. În 1938, chimistul German
Atom () [Corola-website/Science/297795_a_299124]
-
pentru acești izotopi diferiți aștepta descoperirea neutronului, o particulă fără sarcină, cu o masă similară cu a protonului, de către fizicianul James Chadwick în 1932. Izotopii au fost atunci explicați ca elemente cu același număr de protoni, dar număr diferit de neutroni în nucleu. În 1938, chimistul German Otto Hahn, un student al lui Rutherford, a direcționat neutronii asupra unor atomi de uraniu pentru a obține . Experimentele lui chimice au demonstrat, în schimb, producerea de bariu. Un an mai târziu, Lise Meitner
Atom () [Corola-website/Science/297795_a_299124]
-
a protonului, de către fizicianul James Chadwick în 1932. Izotopii au fost atunci explicați ca elemente cu același număr de protoni, dar număr diferit de neutroni în nucleu. În 1938, chimistul German Otto Hahn, un student al lui Rutherford, a direcționat neutronii asupra unor atomi de uraniu pentru a obține . Experimentele lui chimice au demonstrat, în schimb, producerea de bariu. Un an mai târziu, Lise Meitner și nepotul ei au confirmat că rezultatul lui Hahn a fost de fapt prima "fisiune nucleară
Atom () [Corola-website/Science/297795_a_299124]
-
Chimie. În ciuda eforturilor lui Hahn, contribuțiile lui Meitner și Frisch nu au fost recunoscute. În 1950, dezvoltarea unor acceleratoare de particule și detectoare de particule îmbunătățite au permis oamenilor de știință să studieze efectele atomilor în mișcare la energii înalte. Neutronii și protonii s-au dovedit a fi , adică compuși din particule mai mici numite quarkuri. A fost dezvoltat modelul standard al fizicii particulelor, care până acum a explicat cu succes proprietățile nucleului în ceea ce privește aceste particule sub-atomice și forțele care guvernează
Atom () [Corola-website/Science/297795_a_299124]
-
care guvernează interacțiunile lor. Deși cuvântul "atom" denumea inițial o particulă care nu poate fi împărțită în particule mai mici, în utilizarea științifică modernă atomul este compus din diferite particule subatomice. Particulele constituente ale unui atom sunt electronii, protonii și neutronii; toate trei sunt fermioni. Ca excepție, atomul de hidrogen-1 nu are neutroni, iar nu are electroni. Electronul este de departe cel mai puțin masiv din aceste particule, la , cu sarcină electrică negativă și cu dimensiune care este prea mică pentru
Atom () [Corola-website/Science/297795_a_299124]
-
nu poate fi împărțită în particule mai mici, în utilizarea științifică modernă atomul este compus din diferite particule subatomice. Particulele constituente ale unui atom sunt electronii, protonii și neutronii; toate trei sunt fermioni. Ca excepție, atomul de hidrogen-1 nu are neutroni, iar nu are electroni. Electronul este de departe cel mai puțin masiv din aceste particule, la , cu sarcină electrică negativă și cu dimensiune care este prea mică pentru a fi măsurată folosind tehnicile disponibile. Este cea mai ușoară particulă cu
Atom () [Corola-website/Science/297795_a_299124]
-
Ernest Rutherford (1919) a observat că azotul, sub bombardament de particule alfa, radiază ceea ce părea a fi nuclee de hidrogen. În 1920, el acceptase faptul că nucleul de hidrogen este o particulă distinctă în interiorul atomului, și l-a numit proton. Neutronii nu au sarcină electrică și au o masă liberă de 1839 de ori mai mare ca masa electronului, sau , fiind cea mai grea dintre cele trei particule constituente, dar el poate fi redus prin . Neutronii și protonii (cunoscuți colectiv sub
Atom () [Corola-website/Science/297795_a_299124]
-
și l-a numit proton. Neutronii nu au sarcină electrică și au o masă liberă de 1839 de ori mai mare ca masa electronului, sau , fiind cea mai grea dintre cele trei particule constituente, dar el poate fi redus prin . Neutronii și protonii (cunoscuți colectiv sub numele de nucleoni) au dimensiuni comparabile—de ordinul a —deși „suprafața” acestor particule nu este definită clar. Neutronul a fost descoperit în 1932 de către fizicianul englez James Chadwick. În Modelul Standard al fizicii, electronii sunt
Atom () [Corola-website/Science/297795_a_299124]
-
electronului, sau , fiind cea mai grea dintre cele trei particule constituente, dar el poate fi redus prin . Neutronii și protonii (cunoscuți colectiv sub numele de nucleoni) au dimensiuni comparabile—de ordinul a —deși „suprafața” acestor particule nu este definită clar. Neutronul a fost descoperit în 1932 de către fizicianul englez James Chadwick. În Modelul Standard al fizicii, electronii sunt cu adevărat particule elementare, fără structură internă. Cu toate acestea, atât protonii cât și neutronii sunt particule compozite alcatuite din particule elementare numite
Atom () [Corola-website/Science/297795_a_299124]
-
deși „suprafața” acestor particule nu este definită clar. Neutronul a fost descoperit în 1932 de către fizicianul englez James Chadwick. În Modelul Standard al fizicii, electronii sunt cu adevărat particule elementare, fără structură internă. Cu toate acestea, atât protonii cât și neutronii sunt particule compozite alcatuite din particule elementare numite quarkuri. Există două tipuri de quarkuri în atomi, fiecare având o sarcină electrică fracționară. Protonii sunt compuși din două (fiecare cu sarcina +⅔) și un (cu o sarcină de −⅓. Neutronii constau dintr-un
Atom () [Corola-website/Science/297795_a_299124]
-
protonii cât și neutronii sunt particule compozite alcatuite din particule elementare numite quarkuri. Există două tipuri de quarkuri în atomi, fiecare având o sarcină electrică fracționară. Protonii sunt compuși din două (fiecare cu sarcina +⅔) și un (cu o sarcină de −⅓. Neutronii constau dintr-un quark up și două quarkuri down. Această distincție explică diferența de masă și de sarcină electrică între cele două particule. Quarkurile sunt ținute împreună de interacțiunea tare (sau forța nucleară tare), care este mediată de gluoni. Protonii
Atom () [Corola-website/Science/297795_a_299124]