65,457 matches
-
transformă energia razelor solare în energie termică și o cedează unui agent termic (apă, antigel). Cu ajutorul acestui agent termic, energia este preluată de la colector și este fie stocată, fie utilizată direct (ex. apă caldă de consum). Pentru a reduce pierderile termice inevitabile, este nevoie de o izolare termică a elementului absorbant de mediul înconjurător. În funcție de tehnica utilizată în acest scop se deosebesc: În principiu, un colector solar are o carcasă metalică de formă dreptunghiulară în care se află montate celelalte elemente
Colector solar () [Corola-website/Science/308793_a_310122]
-
și o cedează unui agent termic (apă, antigel). Cu ajutorul acestui agent termic, energia este preluată de la colector și este fie stocată, fie utilizată direct (ex. apă caldă de consum). Pentru a reduce pierderile termice inevitabile, este nevoie de o izolare termică a elementului absorbant de mediul înconjurător. În funcție de tehnica utilizată în acest scop se deosebesc: În principiu, un colector solar are o carcasă metalică de formă dreptunghiulară în care se află montate celelalte elemente. Printr-un geam de sticlă, razele solare
Colector solar () [Corola-website/Science/308793_a_310122]
-
carcasă metalică de formă dreptunghiulară în care se află montate celelalte elemente. Printr-un geam de sticlă, razele solare cad pe o suprafață care absoarbe aproape întregul domeniu spectral al acestora. Energia calorică rezultată nu se pierde, colectorul fiind izolat termic în toate părțile. Căldura de convecție spre exterior este limitată de unul sau mai multe geamuri. La colectoarele cu vacuum, aceasta este aproape în întregime eliminată. Căldura de radiație, datorată temperaturii proprii, este de asemenea împiedicată de geamul de sticlă
Colector solar () [Corola-website/Science/308793_a_310122]
-
La colectoarele cu vacuum, aceasta este aproape în întregime eliminată. Căldura de radiație, datorată temperaturii proprii, este de asemenea împiedicată de geamul de sticlă care este opac pentru lungimile de undă mai mari. Această căldură este reținută în interiorul colectorului, echilibrul termic conducând la o temperatură mai înaltă decât în situația fără geam. Acest efect este cunoscut sub numele de efect de seră. La colectoarele solare moderne se utilizează sticlă specială, cu un conținut cât mai mic posibil de fier și cu
Colector solar () [Corola-website/Science/308793_a_310122]
-
o parte, să absoarbă o gamă cât mai largă de radiație solară și, pe de altă parte, să aibă o emisie cât mai redusă în domeniul de infraroșu apropiat, pentru a reduce emisia de căldură Elementul absorbant cedează căldura agentului termic ce curge prin conductele de cupru sau aluminiu atașate acestuia. Agentul termic transportă energia calorică la utilizator sau la un recipient de stocare. Unele instalații solare au circuitul agentului termic deschis, ceea ce înseamnă că prin conductele colectorului circulă chiar apa
Colector solar () [Corola-website/Science/308793_a_310122]
-
și, pe de altă parte, să aibă o emisie cât mai redusă în domeniul de infraroșu apropiat, pentru a reduce emisia de căldură Elementul absorbant cedează căldura agentului termic ce curge prin conductele de cupru sau aluminiu atașate acestuia. Agentul termic transportă energia calorică la utilizator sau la un recipient de stocare. Unele instalații solare au circuitul agentului termic deschis, ceea ce înseamnă că prin conductele colectorului circulă chiar apa necesară utilizatorului, cum este cazul în principal al instalațiilor funcționând pe principiul
Colector solar () [Corola-website/Science/308793_a_310122]
-
a reduce emisia de căldură Elementul absorbant cedează căldura agentului termic ce curge prin conductele de cupru sau aluminiu atașate acestuia. Agentul termic transportă energia calorică la utilizator sau la un recipient de stocare. Unele instalații solare au circuitul agentului termic deschis, ceea ce înseamnă că prin conductele colectorului circulă chiar apa necesară utilizatorului, cum este cazul în principal al instalațiilor funcționând pe principiul termosifonului. În regiunile cu pericol de îngheț mai mare, se apelează totuși de regulă la circuite separate. Circuitul
Colector solar () [Corola-website/Science/308793_a_310122]
-
pentru concentrarea radiației solare. Tuburile vidate se compun din două tuburi de sticlă concentrice intre care este vid. Tubul din interior este înconjurat de o suprafață absorbantă de care este atașat un tub de cupru prin care circulă un agent termic. Vidul dintre tuburi reduce la minimum pierderile de căldură prin convecție și conducție, permițând obținerea de performanțe superioare (randament și temperaturi mai mari). Datorită temperaturilor mai mari instalația de încălzire poate necesita elemente speciale pentru eliminarea pericolului supraîncălzirii. Astfel de
Colector solar () [Corola-website/Science/308793_a_310122]
-
temperaturi mai mari. Un alt avantaj îl reprezintă faptul că suprafața absorbantă fiind mereu perpendiculară pe direcția razelor solare, energia absorbită este aproape constantă în cursul zilei. Tehnologia utilizată la fabricarea acestui tip de colector este asemănătoare celei de la centralele termice cu jgheaburi parabolice. Elementul absorbant trebuie să capteze cât mai bine radiația solară, atât cea directă cât și cea difuză, și să o transforme în căldură. În același timp căldura cedată sub formă de radiație să fie cât se poate
Colector solar () [Corola-website/Science/308793_a_310122]
-
ton de negru-albăstrui. Cele două procedee de acoperire, până mai recent, erau posibile doar pe suprafețe de cupru, pentru aluminiu tehnici corespunzătoare au apărut doar de puțin timp pe piață. Chiar și în acest caz pentru transportul căldurii cu ajutorul agentului termic se utilizează conducte de cupru care se racordează prin sudare laser cu partea absorbantă. Pe lângă materialul de acoperire utilizat, producătorii se disting și prin forma de realizare a părții absorbante. Frecvente sunt soluțiile ce utilizează o placă metalică ce acoperă
Colector solar () [Corola-website/Science/308793_a_310122]
-
o conductă sudată. Benzile mai apoi sunt racordate prin sudură la cele două capete la o conductă colectoare. O a treia formă este asemănătoare unei perne, pe spatele plăcii absorbante fiind sudată o a doua placă, formată prin stanțare. Agentul termic circulă printre cele două plăci. În principiu prima variantă de realizare prezintă eficiența cea mai mare. Dar pentru că producătorii, la început au putut utiliza noile procedee de obținere a straturilor foarte selective doar în cazul plăcilor de cupru cu dimensiuni
Colector solar () [Corola-website/Science/308793_a_310122]
-
În schimb utilizarea benzilor pe de o parte face posibilă doar asamblarea în formă de harfă, pe de altă parte permite adaptarea mai ușoară la forma acoperișurilor (colectoare cu dimensiuni la cerere). Colectorul solar este componenta principală a unei instalații termice solare și până în anul 2002 a fost utilizat îndeosebi pentru prepararea de apă caldă, iar recent își găsește aplicare și în furnizarea energiei necesare încălzirii clădirilor. Dacă este asociat cu un rezervor de stocare a energiei, se poate asigura încălzirea
Colector solar () [Corola-website/Science/308793_a_310122]
-
utilizat îndeosebi pentru prepararea de apă caldă, iar recent își găsește aplicare și în furnizarea energiei necesare încălzirii clădirilor. Dacă este asociat cu un rezervor de stocare a energiei, se poate asigura încălzirea clădirii numai cu energie solară. Vehicularea energiei termice între colectorul solar și locul de utilizare sau depozitare poate avea loc cu sau fără utilizarea unei surse de energie externă. În primul caz avem de-a face cu sisteme ce utilizează pompe acționate electric, sisteme de reglare automată etc.
Colector solar () [Corola-website/Science/308793_a_310122]
-
utilizarea unei surse de energie externă. În primul caz avem de-a face cu sisteme ce utilizează pompe acționate electric, sisteme de reglare automată etc., în al doilea caz se utilizează principiul termosifon bazat pe diferența de densitate a agentului termic la diferite temperaturi. Apa caldă se ridică în sus, pe când cea rece coboară. Altfel decât la încălzire centrală funcționând pe același principiu, în acest caz rezervorul trebuie să se găsească deasupra colectorului solar. Adesea colectorul solar și rezervorul constituie un
Colector solar () [Corola-website/Science/308793_a_310122]
-
o astfel de supradimensionare, randamentul investiției semnificativ mai mari va fi redus și nu va fi compensat de economia de combustibili fosili (gaz, păcură, lemn etc.) sau electricitate devenind nerentabil. Colectoare dimensionate economic, pot înlocui sau completa sursele de energie termică într-un procent suficient de mare contribuția la prepararea apei calde variind între 30 % și 100 % raportat la un an întreg. Primele suprafețe mari acoperite cu colectoare solare au apărut după criza petrolieră din anii 70 fiind utilizate la încălzirea
Colector solar () [Corola-website/Science/308793_a_310122]
-
din anii 70 fiind utilizate la încălzirea apei din bazinele de înot publice și private. Instalarea de colectoare solare a primit un impuls suplimentar în Germania datorită sprijinului guvernamental federal și celui al landurilor. Chiar și procese industriale utilizează energia termică solară. Un exemplu în acest sens îl prezintă încălzirea biomasei în procesul de preparare al biogazului. Dacă instalațiile cu colectoare solare se racordează și la instalațiile de încălzire, se poate contribui și la reducerea costului cu încălzirea cu până la câteva
Colector solar () [Corola-website/Science/308793_a_310122]
-
informațiilor pe care le oferă componentele spectrale ale unui semnal de date pe care sistemul le transportă. Seriile Fourier sunt numite după omul de știință și matematicianul francez Joseph Fourier, care le-a folosit în importanta sa lucrare despre conducția termică, "Théorie Analytique de la Chaleur" ("Teoria analitică a căldurii"), publicată în 1822. Dată fiind o funcție cu valori complexe "f" de argument real "t", "f": R → C, unde " f"("t") este continuă și derivabilă pe porțiuni, periodică de perioadă "T", și
Serie Fourier () [Corola-website/Science/309816_a_311145]
-
În cadrul termodinamicii se studiază sistemele termodinamice, reprezentate prin corpuri care se pot găsi în interacțiune mecanică, termică, difuzională și chimică atât între ele, cât și cu mediul înconjurător. Prin sistem termodinamic se înțelege un corp, o parte a unui corp sau un grup de corpuri, delimitat de restul corpurilor care îl înconjoară printr-o suprafață de control
Sistem termodinamic () [Corola-website/Science/309283_a_310612]
-
pentru sistemul inițial, cât și pentru subsistemele sale. Mărimile specifice se notează de obicei cu litera mică corespunzătoare mărimii extensive, notată cu literă mare. Starea termodinamică a unui sistem este definită de presiune, temperatură și volum masic, mărimi considerate "mărimi termice de stare". Ele nu sunt independente, fiind legate printr-o "ecuație termică de stare": Pentru cunoașterea stării unui sistem este suficientă cunoașterea a două mărimi termice de stare și a ecuației termice de stare, a treia mărime rezultând, și rezultând
Sistem termodinamic () [Corola-website/Science/309283_a_310612]
-
de obicei cu litera mică corespunzătoare mărimii extensive, notată cu literă mare. Starea termodinamică a unui sistem este definită de presiune, temperatură și volum masic, mărimi considerate "mărimi termice de stare". Ele nu sunt independente, fiind legate printr-o "ecuație termică de stare": Pentru cunoașterea stării unui sistem este suficientă cunoașterea a două mărimi termice de stare și a ecuației termice de stare, a treia mărime rezultând, și rezultând de asemenea toate celelalte proprietăți ale sistemului, ca: energia, viscozitatea, conductivitatea termică
Sistem termodinamic () [Corola-website/Science/309283_a_310612]
-
a unui sistem este definită de presiune, temperatură și volum masic, mărimi considerate "mărimi termice de stare". Ele nu sunt independente, fiind legate printr-o "ecuație termică de stare": Pentru cunoașterea stării unui sistem este suficientă cunoașterea a două mărimi termice de stare și a ecuației termice de stare, a treia mărime rezultând, și rezultând de asemenea toate celelalte proprietăți ale sistemului, ca: energia, viscozitatea, conductivitatea termică etc.
Sistem termodinamic () [Corola-website/Science/309283_a_310612]
-
presiune, temperatură și volum masic, mărimi considerate "mărimi termice de stare". Ele nu sunt independente, fiind legate printr-o "ecuație termică de stare": Pentru cunoașterea stării unui sistem este suficientă cunoașterea a două mărimi termice de stare și a ecuației termice de stare, a treia mărime rezultând, și rezultând de asemenea toate celelalte proprietăți ale sistemului, ca: energia, viscozitatea, conductivitatea termică etc.
Sistem termodinamic () [Corola-website/Science/309283_a_310612]
-
termică de stare": Pentru cunoașterea stării unui sistem este suficientă cunoașterea a două mărimi termice de stare și a ecuației termice de stare, a treia mărime rezultând, și rezultând de asemenea toate celelalte proprietăți ale sistemului, ca: energia, viscozitatea, conductivitatea termică etc.
Sistem termodinamic () [Corola-website/Science/309283_a_310612]
-
ele sunt substanțe sau produse care servesc ca hrană oamenilor, unele sunt consumate ca atare altele necesită o pregătire prealabilă (termică sau amestec cu ingrediente). ele se pot categorisi ca alimente de bază, dulciuri, băuturi, mirodenii, substanțe care îmbunătățesc gustul, calitățile optice, sau substanțe care servesc la conservarea lor. O definire a calităților minimale necesare unui aliment sunt stabilite pe plan
Aliment () [Corola-website/Science/309352_a_310681]
-
precizează condițiile în care are loc transformarea energiei termice în energie mecanică. El are un caracter calitativ, arată sensul în care se produc spontan transformările, fără să se refere la cantitățile de energie schimbate. El este o particularizare a principiului general al schimburilor de energie, conform căruia transformările spontane
Principiul al doilea al termodinamicii () [Corola-website/Science/309372_a_310701]