6,556 matches
-
particule încărcate electric). Coada poate fi dreaptă sau curbă, unică sau multiplă. De multe ori cometele prezintă două cozi: una alcătuită din praf, iar alta formată din gaze. Coada formată din praf devine vizibilă deoarece reflectă lumina solară, pe când coada gazoasă este vizibilă datorită gazelor ionizate din care este alcătuită. Particulele de praf dau aureolei o culoare alb-gălbuie, iar gazele ionizate conferă cozii o nuanță albăstruie sau verde. Coada unei comete poate atinge dimensiuni impresionate, uneori mai mult de o Unitate
Cometă () [Corola-website/Science/298255_a_299584]
-
matematice. Laplace a elaborat propria sa cosmologie, difuzată în rândurile comunității științifice europene prin memorii publicate între anii 1780 și 1790. El sugerează că planetele au luat naștere mai întâi prin desprinderea din Soare a unor inele succesive de materie gazoasă, care au devenit apoi sfere solide. Această teorie, numită "ipoteza lui Laplace", sau "ipoteza nebuloaselor", se baza pe mecanica cerească ale cărei baze fuseseră puse de către Newton. A fost teoria predominantă în astronomia secolului al XIX-lea (sub numele de
Pierre-Simon Laplace () [Corola-website/Science/298288_a_299617]
-
compoziția internă a Pământului, precum și procesele ce au loc în interiorul si la suprafața sa. Geologia studiază atât compoziția rocilor expuse la suprafață (în fazele istorice ale geologiei) cât și mai ales continuitatea acestora în adâncime, zăcămintele minerale solide, lichide și gazoase, structura integrală a planetei Terra, plăcile tectonice ale scoarței terestre, dar și structura internă stratificată a planetei. Fazele de cercetare geologică a unei regiuni se încep cu cartarea terenului, aflorimentele (roci expuse la suprafață) fiind punctul de plecare.Urmează faza
Geologie () [Corola-website/Science/298339_a_299668]
-
Atmosferă, cuvânt compus de origine greacă (de la ἀτμός, "atmos" = ceață, abur și σφαῖρα, "sfaira" = sferă), desemnează învelișul de aer sau alte gaze al Pământului sau al altui corp ceresc. Atmosfera planetei noastre este practic 100 % gazoasă, fiind compusă din aer, conține însă și urme de substanțe solide și lichide fin divizate. Atmosfera este numită uneori și, simplu, „aer”. Atmosfera de astăzi a Pământului conține azot (nitrogen) molecular diatomic (N) în proporție de aproape 4/5 (78
Atmosfera Pământului () [Corola-website/Science/298340_a_299669]
-
a rămas neschimbat în atmosferă, fiind încă înainte cu circa 3,4 miliarde de ani partea componentă cea mai importantă a atmosferei. Oxigenul, care joacă un rol esențial în evoluția și existența vieții pe Pământ, a apărut sub formă liberă, gazoasă, acum circa 3,5 miliarde de ani, fiind eliberat datorită activității de fotosinteză a bacteriilor care descompuseseră substanțele bazate pe grupe cianhidrice. Oxigenul format s-a dizolvat în mare parte în apa oceanelor, oxidând metalele feroase. În urmă cu circa
Atmosfera Pământului () [Corola-website/Science/298340_a_299669]
-
Punctul de fierbere al unei substanțe este temperatura la care tranziția de la starea de agregare lichidă la cea gazoasă se petrece în volumul lichidului și nu doar la suprafață. Întrucât punctul de fierbere depinde de presiune, aceasta trebuie precizată. Adesea punctul de fierbere se dă la presiunea de 1 atm (101325 Pa). Când presiunea crește, punctul de fierbere crește
Punct de fierbere () [Corola-website/Science/297153_a_298482]
-
ale nivelelor de energie de rotație, care la H sunt foarte îndepărtate, datorită masei sale mici. Aceste nivele îndepărtate împiedică la temperaturi mici partiția egală (între cei doi atomi ai moleculei) a energiei termice în energie de rotație. Compușii diatomici gazoși formați din atomi mai grei nu au diferențe mari între nivelele energetice de rotație și nu prezintă același efect. Hidrogenul este elementul cu cea mai mică densitate. În formă moleculară (H) este de aproximativ 14,4 ori mai ușor decât
Hidrogen () [Corola-website/Science/297141_a_298470]
-
Un important fenomen este acela de difuzie în fier, platină și în alte metale tranziționale. Aceste proprietăți conduc la utilizări tehnice numeroase, dar de asemenea, și la dificultăți legate de transportul, depozitarea și de prelucrare a amestecurilor de hidrogen. Hidrogenul gazos (în stare de moleculă diatomică) este extrem de inflamabil și la presiune atmosferică se aprinde în aer la concentrații volumetrice cuprinse între 4% și 75%, iar în contact cu oxigenul pur între 4,65% și 93,9%. Limitele între care apare
Hidrogen () [Corola-website/Science/297141_a_298470]
-
formând HCl și HF. Hidrogenul este cel mai răspândit element în univers, reprezentând mai mult de 75% în masă și mai mult de 90% după numărul de atomi. Se găsește în cantități mari în compoziția stelelor și a planetelor gigantice gazoase. Norii moleculari de H sunt asociați cu formarea stelelor. Hidrogenul joacă un rol-cheie și în exploziile stelare datorate reacțiilor de fuziune nucleară dintre protoni. În Univers, hidrogenul este întâlnit mai ales sub forma de atom și în stare de plasmă
Hidrogen () [Corola-website/Science/297141_a_298470]
-
din cauza masei mici, astfel forța gravitațională a planetei are un efect foarte slab asupra sa. Totuși, hidrogenul (prin compușii săi) este cel mai răspândit element de la suprafața Terrei. Cei mai întâlniți compuși chimici ai săi sunt hidrocarburile și apa. Hidrogenul gazos este produs de anumite specii de bacterii și alge, acesta fiind componentul principal al flatulenței. Metanul este o importantă sursă de hidrogen. Nivelul energetic fundamental al electronului în atomul de hidrogen are energia egală cu -13,6 eV. Nivelele superioare
Hidrogen () [Corola-website/Science/297141_a_298470]
-
de hidrogen care diferă prin spinii relativi ai nucleului. În forma de ortohidrogen, spinii celor doi protoni sunt paraleli și formează un triplet; în forma de parahidrogen, spinii sunt antiparaleli și formează un singlet. La temperatură și presiune standard, hidrogenul gazos conține 25% parahidrogen și 75% ortohidrogen („starea normală” a hidrogenului). Proporțiile în care se găsesc orto și parahidrogenul depind de temperatură, dar forma orto este excitată și are o energie mai mare, deci este instabilă și nu poate fi purificată
Hidrogen () [Corola-website/Science/297141_a_298470]
-
este de obicei obținut prin reacția metalelor cu acizii în aparatul Kipp. Aluminiul poate produce H prin tratarea cu baze: Electroliza apei este o metodă simplă de a produce hidrogen. Un curent de joasă tensiune trece prin apă, iar oxigenul gazos se formează la anod, în timp ce hidrogenul gazos apare la catod. De obicei la producerea hidrogenului, catodul este confecționat din platină. Dacă se realizează și arderea, oxigenul este preferat pentru combustie, astfel ambii electrozi sunt confecționați din metale inerte. Eficiența maximă
Hidrogen () [Corola-website/Science/297141_a_298470]
-
cu acizii în aparatul Kipp. Aluminiul poate produce H prin tratarea cu baze: Electroliza apei este o metodă simplă de a produce hidrogen. Un curent de joasă tensiune trece prin apă, iar oxigenul gazos se formează la anod, în timp ce hidrogenul gazos apare la catod. De obicei la producerea hidrogenului, catodul este confecționat din platină. Dacă se realizează și arderea, oxigenul este preferat pentru combustie, astfel ambii electrozi sunt confecționați din metale inerte. Eficiența maximă (electricitatea utilizată raportată la cantitatea de hidrogen
Hidrogen () [Corola-website/Science/297141_a_298470]
-
acoperișul caselor. Ele nu au nevoie de teren și nu intră în competiție cu producția de alimente”. La unele specii de alge, cum ar fi Chlamydomonas reinhardtii sau cyanobacteria, la întuneric, protonii și electronii sunt reduși pentru a forma H gazos cu ajutorul hidrogenazei în cloroplast. Anual se înregistrează un consum mondial de hidrogen de peste 500 miliarde metri cubi normali în diverse scopuri și în diferite domenii. În afara utilizării ca reactant, hidrogenul are multe aplicații în inginerie și fizică. Se utilizează la
Hidrogen () [Corola-website/Science/297141_a_298470]
-
marcare izotopică și ca sursa de iradiere pentru vopselele fosforescente. Hidrogenul poate forma amestecuri explozive cu aerul și reacționează violent cu oxidanții. În cazul inhalării în cantități foarte mari, poate produce asfixierea, pierderea mobilității motrice și a cunoștinței. Scurgerea hidrogenului gazos în atmosferă poate cauza autoaprinderea sa. Flacăra de hidrogen este invizibilă, acest lucru putând produce arsuri accidentale. Multe proprietăți fizice și chimice ale hidrogenului depind de proporția de orto/parahidrogen. Uneori durează săptămâni pentru a atinge starea de echilibru a
Hidrogen () [Corola-website/Science/297141_a_298470]
-
azbestul etc.) au o comportare inversă materialelor organice. Materialele de natură siliconică îmbină în mod favorabil cele mai bune proprietăți ale materialelor organice și anorganice. Luând în considerare starea de agregare a materialelor electroizolante vom distinge materiale: solide, lichide și gazoase. Folosind drept criteriu de clasificare stabilitatea termică, materialele electroizolante se împart în clase de izolație și au caracteristica comună temperatura maximă la care pot fi utilizate timp îndelungat. Pentru determinarea stabilității termice, pe lângă temperatură, se pot utiliza și mărimi electrice
Conductivitate electrică () [Corola-website/Science/297155_a_298484]
-
întâmplă când ceva arde, pe faptul că majoritatea obiectelor comune par să devină mai luminoase și să piardă "ceva" în timpul procesului. Descoperirea oxigenului !! Oxigenul a fost descoperit pentru prima dată de către farmacistul suedez Carl Wilhelm Scheele. El a produs oxigen gazos prin încălzirea oxidului mercuric și a diverșilor azotați prin anul 1772. Scheele a denumit gazul „aer de foc” (), deoarece era singurul lucru care putea întreține arderea, și a scris despre descoperirea sa într-un manuscris intitulat "Tratat despre Aer și
Oxigen () [Corola-website/Science/297158_a_298487]
-
sale izolate, prin compresie și răcire. Folosind o metodă de cascadă, chimistul și farmacistul elvețian Raoul Pierre Pictet a evaporat dioxid de sulf lichid pentru a lichefia dioxidul de carbon, care în parte a fost evaporat pentru a răci oxigenul gazos suficient pentru a putea fi lichefiat. El a trimis pe 22 decembrie 1877 o telegramă către Academia Franceză de Științe din Paris, anunțând descoperirea oxigenului lichid. Doar două zile mai târziu, fizicianul francez Louis Paul Cailletet a anunțat propria sa
Oxigen () [Corola-website/Science/297158_a_298487]
-
răspândit element chimic din univers, după hidrogen și heliu. Aproximativ 0,9% din masa Soarelui este oxigen , element care constituie 49,2% din masa scoarței terestre, și este și componentul major al oceanelor planetare (88,8% din masa lor). Oxigenul gazos este al doilea cel mai răspândit component din atmosfera Pământului, deoarece reprezintă 20,8% din volumul său și 23,1% din masa sa (câteva 10 tone). Pământul este o excepție printre planetele din Sistemul Solar, având o astfel de concentrație
Oxigen () [Corola-website/Science/297158_a_298487]
-
cel mai răspândit component din atmosfera Pământului, deoarece reprezintă 20,8% din volumul său și 23,1% din masa sa (câteva 10 tone). Pământul este o excepție printre planetele din Sistemul Solar, având o astfel de concentrație ridicată de oxigen gazos în atmosfera sa; de exemplu, Marte (cu 0,1% din volum) și Venus au concentrații mult mai mici. Totuși, din jurul acestor planete este produs exclusiv prin reacția suferită de moleculele care conțin oxigen -cum ar fi dioxidul de carbon-, în urma
Oxigen () [Corola-website/Science/297158_a_298487]
-
0,1% din volum) și Venus au concentrații mult mai mici. Totuși, din jurul acestor planete este produs exclusiv prin reacția suferită de moleculele care conțin oxigen -cum ar fi dioxidul de carbon-, în urma impactului radiațiilor ultraviolete. Concentrația neobișnuită de oxigen gazos de pe Pământ este rezultatul ciclului oxigenului. Acest ciclu biogeochimic descrie circulația oxigenului în cadrul și între cele trei mai rezerve ale planetei Pământ: atmosfera, biosfera și litosfera. Factorul de mișcare cel mai important în acest ciclu este fotosinteza, care este responsabilă
Oxigen () [Corola-website/Science/297158_a_298487]
-
lichefierea aerului, costul producției se va schimba după variațiile prețului energiei. Din motive economice, oxigenul este transportat cel mai des ca lichid în cisterne special izolate, deoarece un litru de oxigen lichefiat este echivalentul a 840 de litri de oxigen gazos, la presiunea atmosferei și 20 °C (68 °F). Astfel de cisterne sunt folosite pentru a reaproviziona majoritatea containerelor de depozitare, care se află în afara spitalelor și altor instituții care au nevoie de cantități mari de oxigen pur. Oxigenul e, de
Oxigen () [Corola-website/Science/297158_a_298487]
-
fost înlocuite de măștile de oxigen și de canulele nazale. Oxigenoterapia hiperbară folosește camere de oxigen speciale pentru a crește presiunea parțială a oxigenului a pacientului, sau, în caz de nevoie, a personalului medical. Intoxicarea cu monoxid de carbon, gangrena gazoasă și răul de decompresie sunt, uneori, tratate folosind aceste dispozitive. O concentrație ridicată de în plămâni ajută la despărțirea monoxidului de carbon de grupul hemic al hemoglobinei. Oxigenul este otrăvitor pentru bacteriile anaerobe care cauzează gangrenele gazoase, deci creșterea presiunii
Oxigen () [Corola-website/Science/297158_a_298487]
-
de carbon, gangrena gazoasă și răul de decompresie sunt, uneori, tratate folosind aceste dispozitive. O concentrație ridicată de în plămâni ajută la despărțirea monoxidului de carbon de grupul hemic al hemoglobinei. Oxigenul este otrăvitor pentru bacteriile anaerobe care cauzează gangrenele gazoase, deci creșterea presiunii sale parțiale ajută la eliminarea acestora. Răul de decompresie are loc în scafandrii care se decompresează prea repede după o scufundare, rezultând în bule de gaz inert, cel mai des constituind în azot și heliu, formându-se
Oxigen () [Corola-website/Science/297158_a_298487]
-
este a șasea planetă de la Soare și a doua ca mărime din Sistemul Solar, după Jupiter. Împreună cu Jupiter, Uranus și Neptun, este clasificat ca un gigant gazos. Aceste planete sunt numite "corpuri joviane", însemnând "planete asemănătoare cu Jupiter". Saturn este numit după zeul roman Saturnus (care va denumi ziua de sâmbătă), echivalentul zeului grec Kronos (Titan și tatăl lui Zeus), babilonianul Ninurta și divinității Hindu Shani. Simbolul
Saturn () [Corola-website/Science/298210_a_299539]