6,871 matches
-
137 FIZIOLOGIA RESPIRATIEI I. L. Serban, D. N. Serban 17. Introducere în fiziologia respirației 138 18. Ventilația alveolară 138 18.1. Date de anatomie funcțională a aparatului respirator 138 18.2. Funcțiile căilor respiratorii 140 18.3. Forțe care acționează asupra plămânului 144 18.4. Ciclul respirator 147 18.4.1. Inspirul 148 18.4.2. Expirul 149 18.4.3. Volume și debite respiratorii 150 18.4.4. Lucrul mecanic respirator 152 18.5. Efectul ventilator alveolar al aerului vehiculat 152
Fiziologie umană: funcțiile vegetative by Ionela Lăcrămioara Serban, Walther Bild, Dragomir Nicolae Serban () [Corola-publishinghouse/Science/1306_a_2281]
-
căile aeriene 158 18.6.5. Alți receptori implicați în controlul ventilației 159 18.6.6. Centrii nervoși 159 18.6.7. Efectorii 162 18.6.8. Controlul integrativ al mișcarilor respiratorii 162 19. Hematoza pulmonară și alte funcții ale plămânului 167 19.1. Schimbul de gaze respiratorii la nivel alveolar 167 19.2. Circulația pulmonară 168 19.2.1. Regimul presional și echilibrul Starling 169 19.2.2. Relația ventilație-perfuzie 172 19.3. Funcția antitoxică a plămânului 176 19.4
Fiziologie umană: funcțiile vegetative by Ionela Lăcrămioara Serban, Walther Bild, Dragomir Nicolae Serban () [Corola-publishinghouse/Science/1306_a_2281]
-
alte funcții ale plămânului 167 19.1. Schimbul de gaze respiratorii la nivel alveolar 167 19.2. Circulația pulmonară 168 19.2.1. Regimul presional și echilibrul Starling 169 19.2.2. Relația ventilație-perfuzie 172 19.3. Funcția antitoxică a plămânului 176 19.4. Funcțiile metabolice ale plămânului 177 20. Transportul sanguin al gazelor respiratorii și schimbul tisular 178 20.1. Transportul sanguin al oxigenului 179 20.2. Transportul sanguin al bioxidului de carbon 182 20.3. Schimbul de gaze respiratorii
Fiziologie umană: funcțiile vegetative by Ionela Lăcrămioara Serban, Walther Bild, Dragomir Nicolae Serban () [Corola-publishinghouse/Science/1306_a_2281]
-
Schimbul de gaze respiratorii la nivel alveolar 167 19.2. Circulația pulmonară 168 19.2.1. Regimul presional și echilibrul Starling 169 19.2.2. Relația ventilație-perfuzie 172 19.3. Funcția antitoxică a plămânului 176 19.4. Funcțiile metabolice ale plămânului 177 20. Transportul sanguin al gazelor respiratorii și schimbul tisular 178 20.1. Transportul sanguin al oxigenului 179 20.2. Transportul sanguin al bioxidului de carbon 182 20.3. Schimbul de gaze respiratorii la nivel tisular 185 FIZIOLOGIA EXCRETIEI W
Fiziologie umană: funcțiile vegetative by Ionela Lăcrămioara Serban, Walther Bild, Dragomir Nicolae Serban () [Corola-publishinghouse/Science/1306_a_2281]
-
tricuspidă)) și sigmoide (ale aortei și ale trunchiului arterial pulmonar). Toate vasele sanguine asigură curgerea sângelui, dar diversele tipuri de vase prezintă particularități morfofuncționale (tab. 5). Metabolismul celular necesită un aport permanent de oxigen. Pentru aceasta sângele este oxigenat în plămâni, iar circulația pulmonară (ventricul drept plămâni atriu stâng) este conectată în serie cu cea sistemică (ventricul stâng țesuturi atriu drept) la nivelul valvelor atrioventriculare (fig. 28). Fiecare din cele două circuite circulatorii are propria pompă ventriculară (tab. 4), iar atriile
Fiziologie umană: funcțiile vegetative by Ionela Lăcrămioara Serban, Walther Bild, Dragomir Nicolae Serban () [Corola-publishinghouse/Science/1306_a_2281]
-
ale trunchiului arterial pulmonar). Toate vasele sanguine asigură curgerea sângelui, dar diversele tipuri de vase prezintă particularități morfofuncționale (tab. 5). Metabolismul celular necesită un aport permanent de oxigen. Pentru aceasta sângele este oxigenat în plămâni, iar circulația pulmonară (ventricul drept plămâni atriu stâng) este conectată în serie cu cea sistemică (ventricul stâng țesuturi atriu drept) la nivelul valvelor atrioventriculare (fig. 28). Fiecare din cele două circuite circulatorii are propria pompă ventriculară (tab. 4), iar atriile sunt camere de admisie ce se
Fiziologie umană: funcțiile vegetative by Ionela Lăcrămioara Serban, Walther Bild, Dragomir Nicolae Serban () [Corola-publishinghouse/Science/1306_a_2281]
-
circulația sistemică, nu este necesară o presiune de intrare atât de mare pentru a se asigura o perfuzie adecvată. Circulația sângelui este esențială pentru schimbul de substanțe cu mediul extern, la nivelul structurilor specializate funcțional în acest sens (intestin, rinichi, plămân) și pentru menținerea unor parametri biologici în cadrul unui domeniu restrâns de variație, aspect denumit generic homeostazie. Sângele circulant permite de asemeni transmiterea unor mesaje chimice către țesuturi prin diverse categorii de substanțe (mai ales prin hormoni). Circulația sângelui este supusă
Fiziologie umană: funcțiile vegetative by Ionela Lăcrămioara Serban, Walther Bild, Dragomir Nicolae Serban () [Corola-publishinghouse/Science/1306_a_2281]
-
al reacțiilor alergice, produce arteriolo-dilatație și permeabilizarea peretelui capilar. 14.5. Aspecte circulatorii specifice teritoriului vascular Fiecare țesut și organ prezintă particularități circulatorii. Cele mai multe sunt prezentate la capitolele respective, deoarece sunt esențiale pentru înțelegerea funcțiilor specifice (schimburile de gaze în plămâni, formarea urinei de către rinichi, secreția hipofizară, absorbția intestinală, formarea bilei, ciclul menstrual și sarcina). Rămân astfel doar trei exemple majore: miocardul, tegumentul și sistemul nervos central. Particularitățile principale circulatorii în mușchiul scheletic sunt legate de activitatea musculară și sunt prezentate
Fiziologie umană: funcțiile vegetative by Ionela Lăcrămioara Serban, Walther Bild, Dragomir Nicolae Serban () [Corola-publishinghouse/Science/1306_a_2281]
-
5-20 μm (mai subțiri la capătul arterial), suprafața totală de secțiune la nivel capilar este de ~4000 cm2, iar suprafața totală a peretelui capilar (1 μm grosime) este de ~6300 m2. Densitatea capilarelor este variabilă în funcție de țesut (6000/mm3 în plămân, creier, glande endocrine; 5000/mm3 în miocard; 400-3000/mm3 în mușchi scheletic și piele), dar în general fiecare celulă se găsește la distanță maximă de 60-80 μm față de cel mai apropiat capilar. Mai multe capilare rezultă dintr-o metarteriolă și
Fiziologie umană: funcțiile vegetative by Ionela Lăcrămioara Serban, Walther Bild, Dragomir Nicolae Serban () [Corola-publishinghouse/Science/1306_a_2281]
-
sfincter precapilar și canale preferențiale, ce sunt lipsite de sfincter precapilar (fig. 54). Aceste canale diferă de anastomozele arteriovenoase (șunturi), care au perete muscular. Anastomoze arterio-venoase, cu efect de scurtcircuitare a patului capilar, sunt prezente în pielea extremităților, tubul digestiv, plămân. In unele țesuturi (mușchi scheletic) nu sunt evidente căile de șunt, dar acest tip de circulație poate fi demonstrată, fiind numită șunt fiziologic. Cu alte cuvinte, sângele poate curge permanent din arteriolă spre venulă în perioadele de activitate metabolică redusă
Fiziologie umană: funcțiile vegetative by Ionela Lăcrămioara Serban, Walther Bild, Dragomir Nicolae Serban () [Corola-publishinghouse/Science/1306_a_2281]
-
de bioxid de carbon de către acestea. Așa-zisul aparat respirator asigură, în mod pasiv, numai primele două procese, adică ventilația și schimbul de gaze la nivel alveolar. 18. Ventilația alveolară Mecanica ventilației se referă la forțele care intervin în menținerea plămânilor solidarizați de cutia toracică și mișcarea acesteia în cursul ventilației în vederea asigurării schimburilor gazoase între mediul extern și aerul alveolar. 18.1. Date de anatomie funcțională a aparatului respirator In inspir aerul pătrunde prin fosele nazale (în mod obișnuit) și
Fiziologie umană: funcțiile vegetative by Ionela Lăcrămioara Serban, Walther Bild, Dragomir Nicolae Serban () [Corola-publishinghouse/Science/1306_a_2281]
-
ramifică în scurte canale fără perete muscular, canalele alveolare (fig. 62); fiecare canal comunică direct cu un număr de alveole pulmonare, locul unde are loc schimbul de gaze respiratorii. Prezența mucusului și cililor la nivelul bronhiilor și bronhiolelor conferă protecție plămânilor față de agresiunile externe (vezi mai jos). Alveolele prezintă un perete epitelial foarte subțire acoperit cu un strat fin de lichid alveolar (surfactant pulmonar). Plămânii sunt acoperiți la exterior de o membrană cunoscută sub numele de pleura viscerală care este separată
Fiziologie umană: funcțiile vegetative by Ionela Lăcrămioara Serban, Walther Bild, Dragomir Nicolae Serban () [Corola-publishinghouse/Science/1306_a_2281]
-
loc schimbul de gaze respiratorii. Prezența mucusului și cililor la nivelul bronhiilor și bronhiolelor conferă protecție plămânilor față de agresiunile externe (vezi mai jos). Alveolele prezintă un perete epitelial foarte subțire acoperit cu un strat fin de lichid alveolar (surfactant pulmonar). Plămânii sunt acoperiți la exterior de o membrană cunoscută sub numele de pleura viscerală care este separată de pleura parietală (care tapetează peretele intern al cutiei toracice) de un strat subțire de lichid pleural. Deoarece lichidul pleural nu poate fi comprimat
Fiziologie umană: funcțiile vegetative by Ionela Lăcrămioara Serban, Walther Bild, Dragomir Nicolae Serban () [Corola-publishinghouse/Science/1306_a_2281]
-
de lichid pleural. Deoarece lichidul pleural nu poate fi comprimat sau expansionat cele două foițe pleurale rămân strâns solidarizate una de cealaltă. Orice mișcare a diafragmului și a peretelui toracic atrage după sine creșterea sau scăderea volumului de aer din plămân. Funcția esențială a plămânului este schimbul de gaze respiratorii; în acest context este foarte important de discutat despre bariera care separă sângele din capilarele pulmonare de aerul alveolar. Această barieră are o grosime mai mică de ½ µm și este alcătuită
Fiziologie umană: funcțiile vegetative by Ionela Lăcrămioara Serban, Walther Bild, Dragomir Nicolae Serban () [Corola-publishinghouse/Science/1306_a_2281]
-
lichidul pleural nu poate fi comprimat sau expansionat cele două foițe pleurale rămân strâns solidarizate una de cealaltă. Orice mișcare a diafragmului și a peretelui toracic atrage după sine creșterea sau scăderea volumului de aer din plămân. Funcția esențială a plămânului este schimbul de gaze respiratorii; în acest context este foarte important de discutat despre bariera care separă sângele din capilarele pulmonare de aerul alveolar. Această barieră are o grosime mai mică de ½ µm și este alcătuită din celule epiteliale alveolare
Fiziologie umană: funcțiile vegetative by Ionela Lăcrămioara Serban, Walther Bild, Dragomir Nicolae Serban () [Corola-publishinghouse/Science/1306_a_2281]
-
presiune capilară normală nu toate capilarele sunt deschise, dar deschiderea capilarelor are loc când presiunea crește (de exemplu, în cursul efortului). Când toate capilarele sunt deschise, mai mult de 80% din aria alveolară este practic disponibilă pentru schimb de gaze. Plămânul are și o irigație sanguină de proveniență sistemică (arterele bronșice, care iau naștere din aortă), care se distribuie de fapt la nivelul arborelui bronșic; fluxul sanguin prin arterele bronșice este de ~100 ori mai mic în comparație cu circulația pulmonară. Există și
Fiziologie umană: funcțiile vegetative by Ionela Lăcrămioara Serban, Walther Bild, Dragomir Nicolae Serban () [Corola-publishinghouse/Science/1306_a_2281]
-
sunt foarte multe căi aeriene dispuse în paralel, cu rezistență combinată mică. Volumul pulmonar are un efect important asupra rezistenței căilor aeriene; bronhiile care pătrund în parenchimul pulmonar sunt comprimate de țesutul pulmonar din jur, calibrul lor este crescut când plămânul este expansionat în cursul inspirului. Când volumul pulmonar este redus, rezistența căilor aeriene crește (relația este liniară). Este important de monitorizat acești parametri la pacienții cu rezistență mare a căilor aeriene (de exemplu, în astmul bronșic). Un alt factor determinant
Fiziologie umană: funcțiile vegetative by Ionela Lăcrămioara Serban, Walther Bild, Dragomir Nicolae Serban () [Corola-publishinghouse/Science/1306_a_2281]
-
fi crescut, deoarece, atunci când crește presiunea intrapleurală crește și presiunea alveolară. Presiunea de conducere (presiunea alveolară minus intrapleurală) rămâne constantă ; aceasta explică de ce debitul este independent de efort. Debitul maxim poate fi determinat parțial de forța de recul elastic a plămânului; aceasta este generată de diferența dintre presiunile alveolară și intrapleurală. Această forță de recul elastic va scade când volumul pulmonar devine mic și aceasta este unul din motive pentru care debitul maxim scade când volumul pulmonar scade. Un alt motiv
Fiziologie umană: funcțiile vegetative by Ionela Lăcrămioara Serban, Walther Bild, Dragomir Nicolae Serban () [Corola-publishinghouse/Science/1306_a_2281]
-
pulmonar devine mic și aceasta este unul din motive pentru care debitul maxim scade când volumul pulmonar scade. Un alt motiv este că rezistența căilor aeriene periferice crește cu cât volumul pulmonar se reduce. 18.3. Forțe care acționează asupra plămânului In cursul respirației obișnuite la nivelul plămânilor acționează trei forțe; două dintre ele au tendința de a determina colabarea plămânilor iar cea de-a treia are tendința de a-i destinde. Tesutul elastic al plămânului este întins în condiții fiziologice
Fiziologie umană: funcțiile vegetative by Ionela Lăcrămioara Serban, Walther Bild, Dragomir Nicolae Serban () [Corola-publishinghouse/Science/1306_a_2281]
-
din motive pentru care debitul maxim scade când volumul pulmonar scade. Un alt motiv este că rezistența căilor aeriene periferice crește cu cât volumul pulmonar se reduce. 18.3. Forțe care acționează asupra plămânului In cursul respirației obișnuite la nivelul plămânilor acționează trei forțe; două dintre ele au tendința de a determina colabarea plămânilor iar cea de-a treia are tendința de a-i destinde. Tesutul elastic al plămânului este întins în condiții fiziologice, iar tensiunea rezultată din această întindere acționează
Fiziologie umană: funcțiile vegetative by Ionela Lăcrămioara Serban, Walther Bild, Dragomir Nicolae Serban () [Corola-publishinghouse/Science/1306_a_2281]
-
motiv este că rezistența căilor aeriene periferice crește cu cât volumul pulmonar se reduce. 18.3. Forțe care acționează asupra plămânului In cursul respirației obișnuite la nivelul plămânilor acționează trei forțe; două dintre ele au tendința de a determina colabarea plămânilor iar cea de-a treia are tendința de a-i destinde. Tesutul elastic al plămânului este întins în condiții fiziologice, iar tensiunea rezultată din această întindere acționează ca o forță elastică ce determină colabarea plămânului prin tragerea spre interior a
Fiziologie umană: funcțiile vegetative by Ionela Lăcrămioara Serban, Walther Bild, Dragomir Nicolae Serban () [Corola-publishinghouse/Science/1306_a_2281]
-
3. Forțe care acționează asupra plămânului In cursul respirației obișnuite la nivelul plămânilor acționează trei forțe; două dintre ele au tendința de a determina colabarea plămânilor iar cea de-a treia are tendința de a-i destinde. Tesutul elastic al plămânului este întins în condiții fiziologice, iar tensiunea rezultată din această întindere acționează ca o forță elastică ce determină colabarea plămânului prin tragerea spre interior a pleurei viscerale (fig. 66). Tensiunea superficială este cea de-a doua forță care are tendința
Fiziologie umană: funcțiile vegetative by Ionela Lăcrămioara Serban, Walther Bild, Dragomir Nicolae Serban () [Corola-publishinghouse/Science/1306_a_2281]
-
tendința de a determina colabarea plămânilor iar cea de-a treia are tendința de a-i destinde. Tesutul elastic al plămânului este întins în condiții fiziologice, iar tensiunea rezultată din această întindere acționează ca o forță elastică ce determină colabarea plămânului prin tragerea spre interior a pleurei viscerale (fig. 66). Tensiunea superficială este cea de-a doua forță care are tendința de a colaba plămânul; se referă la forța generată de pelicula de lichid care tapetează alveolele și are tendința de
Fiziologie umană: funcțiile vegetative by Ionela Lăcrămioara Serban, Walther Bild, Dragomir Nicolae Serban () [Corola-publishinghouse/Science/1306_a_2281]
-
condiții fiziologice, iar tensiunea rezultată din această întindere acționează ca o forță elastică ce determină colabarea plămânului prin tragerea spre interior a pleurei viscerale (fig. 66). Tensiunea superficială este cea de-a doua forță care are tendința de a colaba plămânul; se referă la forța generată de pelicula de lichid care tapetează alveolele și are tendința de a le colaba trăgând de ele spre interior, departe de peretele toracic. Presiunea negativă intra-pleurală acționează în sens opus. Efectele forței elastice și
Fiziologie umană: funcțiile vegetative by Ionela Lăcrămioara Serban, Walther Bild, Dragomir Nicolae Serban () [Corola-publishinghouse/Science/1306_a_2281]
-
presiune negativă în lichidul pleural. Presiunea intraalveolară ar trebui să fie egală cu cea atmosferică datorită comunicării alveolelor cu exteriorul prin căile aeriene. Dar presiunea intra-alveolară este mai mare decât cea extrapleurală. Presiunea transmurală rezultată este cea care menține plămânii plini cu aer (presiune de destindere). Apariția unei rupturi la nivelul căilor aeriene sau al peretelui toracic determină pătrunderea aerului în cavitatea pleurală (pneumotorax). In această situație presiunea intrapleurală crește până la valoarea zero (presiune atmosferică) și chiar peste această valoare
Fiziologie umană: funcțiile vegetative by Ionela Lăcrămioara Serban, Walther Bild, Dragomir Nicolae Serban () [Corola-publishinghouse/Science/1306_a_2281]