1,626 matches
-
o presiune de 8 cm H2O pentru a menține deschise căile aeriene. Se descriu modificări importante la începutul inspirului forțat (D). Presiunea intrapleurală crește foarte mult, ajungând la aproximativ la 30 cm H2O. Diferența de presiune dintre spațiile intrapleural și alveolar este tot de 8 cm H2O deoarece volumul pulmonar s-a modificat prin cantități neglijabile la începutul inspirului. Astfel, presiunea alveolară este acum 38 cm H2O. Din nou este o presiune de-a lungul căilor aeriene datorită rezistenței acestora la
Fiziologie umană: funcțiile vegetative by Ionela Lăcrămioara Serban, Walther Bild, Dragomir Nicolae Serban () [Corola-publishinghouse/Science/1306_a_2286]
-
Presiunea intrapleurală crește foarte mult, ajungând la aproximativ la 30 cm H2O. Diferența de presiune dintre spațiile intrapleural și alveolar este tot de 8 cm H2O deoarece volumul pulmonar s-a modificat prin cantități neglijabile la începutul inspirului. Astfel, presiunea alveolară este acum 38 cm H2O. Din nou este o presiune de-a lungul căilor aeriene datorită rezistenței acestora la flux care are o valoare de 19 cm H2O. Se mai observă că la o presiune de 11 cm H2O la
Fiziologie umană: funcțiile vegetative by Ionela Lăcrămioara Serban, Walther Bild, Dragomir Nicolae Serban () [Corola-publishinghouse/Science/1306_a_2286]
-
a le închide; căile aeriene sunt comprimate și parțial închise. In aceste condiții, fluxul este independent de presiunea din aval, fiind determinată numai de diferența dintre presiunea din amonte și presiunea din afara tubului colabat. In cazul plămanului, acesta devine presiunea alveolară minus presiunea intrapleurală. Putem trage două concluzii importante. Nu are importanță cât de puternic este expirul, debitul nu poate fi crescut, deoarece, atunci când crește presiunea intrapleurală crește și presiunea alveolară. Presiunea de conducere (presiunea alveolară minus intrapleurală) rămâne constantă ; aceasta
Fiziologie umană: funcțiile vegetative by Ionela Lăcrămioara Serban, Walther Bild, Dragomir Nicolae Serban () [Corola-publishinghouse/Science/1306_a_2286]
-
presiunea din afara tubului colabat. In cazul plămanului, acesta devine presiunea alveolară minus presiunea intrapleurală. Putem trage două concluzii importante. Nu are importanță cât de puternic este expirul, debitul nu poate fi crescut, deoarece, atunci când crește presiunea intrapleurală crește și presiunea alveolară. Presiunea de conducere (presiunea alveolară minus intrapleurală) rămâne constantă ; aceasta explică de ce debitul este independent de efort. Debitul maxim poate fi determinat parțial de forța de recul elastic a plămânului; aceasta este generată de diferența dintre presiunile alveolară și intrapleurală
Fiziologie umană: funcțiile vegetative by Ionela Lăcrămioara Serban, Walther Bild, Dragomir Nicolae Serban () [Corola-publishinghouse/Science/1306_a_2286]
-
cazul plămanului, acesta devine presiunea alveolară minus presiunea intrapleurală. Putem trage două concluzii importante. Nu are importanță cât de puternic este expirul, debitul nu poate fi crescut, deoarece, atunci când crește presiunea intrapleurală crește și presiunea alveolară. Presiunea de conducere (presiunea alveolară minus intrapleurală) rămâne constantă ; aceasta explică de ce debitul este independent de efort. Debitul maxim poate fi determinat parțial de forța de recul elastic a plămânului; aceasta este generată de diferența dintre presiunile alveolară și intrapleurală. Această forță de recul elastic
Fiziologie umană: funcțiile vegetative by Ionela Lăcrămioara Serban, Walther Bild, Dragomir Nicolae Serban () [Corola-publishinghouse/Science/1306_a_2286]
-
și presiunea alveolară. Presiunea de conducere (presiunea alveolară minus intrapleurală) rămâne constantă ; aceasta explică de ce debitul este independent de efort. Debitul maxim poate fi determinat parțial de forța de recul elastic a plămânului; aceasta este generată de diferența dintre presiunile alveolară și intrapleurală. Această forță de recul elastic va scade când volumul pulmonar devine mic și aceasta este unul din motive pentru care debitul maxim scade când volumul pulmonar scade. Un alt motiv este că rezistența căilor aeriene periferice crește cu
Fiziologie umană: funcțiile vegetative by Ionela Lăcrămioara Serban, Walther Bild, Dragomir Nicolae Serban () [Corola-publishinghouse/Science/1306_a_2286]
-
două foițe pleurale acționează forțe de sens contrar și ca urmare se dezvoltă o presiune negativă în lichidul pleural. Presiunea intraalveolară ar trebui să fie egală cu cea atmosferică datorită comunicării alveolelor cu exteriorul prin căile aeriene. Dar presiunea intra-alveolară este mai mare decât cea extrapleurală. Presiunea transmurală rezultată este cea care menține plămânii plini cu aer (presiune de destindere). Apariția unei rupturi la nivelul căilor aeriene sau al peretelui toracic determină pătrunderea aerului în cavitatea pleurală (pneumotorax). In această
Fiziologie umană: funcțiile vegetative by Ionela Lăcrămioara Serban, Walther Bild, Dragomir Nicolae Serban () [Corola-publishinghouse/Science/1306_a_2286]
-
zero (presiune atmosferică) și chiar peste această valoare, având ca efect colabarea plămânilor. Surfactantul pulmonar Tensiunea superficială dată de lichidul care tapetează alveolele reprezintă un factor important în menținerea plămânilor plini cu aer. Această peliculă de lichid împiedică contactul epiteliului alveolar direct cu aerul și astfel menține viabilitatea și funcția celulelor respective. Cantitatea de lichid intra-alveolar (sub forma acestei pelicule) este dictată de echilibrul Starling la nivelul capilarelor pulmonare și de o balanță similară între surfactant și lcihidul interstițial, separate
Fiziologie umană: funcțiile vegetative by Ionela Lăcrămioara Serban, Walther Bild, Dragomir Nicolae Serban () [Corola-publishinghouse/Science/1306_a_2286]
-
superficială dată de lichidul care tapetează alveolele reprezintă un factor important în menținerea plămânilor plini cu aer. Această peliculă de lichid împiedică contactul epiteliului alveolar direct cu aerul și astfel menține viabilitatea și funcția celulelor respective. Cantitatea de lichid intra-alveolar (sub forma acestei pelicule) este dictată de echilibrul Starling la nivelul capilarelor pulmonare și de o balanță similară între surfactant și lcihidul interstițial, separate prin epiteliul alveolar. Dacă alveolele ar fi acoperite cu un lichid cu compoziție similară cu cea
Fiziologie umană: funcțiile vegetative by Ionela Lăcrămioara Serban, Walther Bild, Dragomir Nicolae Serban () [Corola-publishinghouse/Science/1306_a_2286]
-
aerul și astfel menține viabilitatea și funcția celulelor respective. Cantitatea de lichid intra-alveolar (sub forma acestei pelicule) este dictată de echilibrul Starling la nivelul capilarelor pulmonare și de o balanță similară între surfactant și lcihidul interstițial, separate prin epiteliul alveolar. Dacă alveolele ar fi acoperite cu un lichid cu compoziție similară cu cea din spațiul interstițial acest lcihid ar fi o simplă soluție apoasă, cu tensiune superficială mare, determinând o tendință accentuată a alveolelor de a se colaba. Surfactantul pulmonar
Fiziologie umană: funcțiile vegetative by Ionela Lăcrămioara Serban, Walther Bild, Dragomir Nicolae Serban () [Corola-publishinghouse/Science/1306_a_2286]
-
din spațiul interstițial acest lcihid ar fi o simplă soluție apoasă, cu tensiune superficială mare, determinând o tendință accentuată a alveolelor de a se colaba. Surfactantul pulmonar conține substanțe tensioactive (în special palmitoilfosfatidilcolină); secretate de celulele epiteliale specializate din peretele alveolar, numite pneumocite de tip II (fig. 67). In ansamblul mecanic toracopulmonar tensiunea superficială redusă a surfactantului favorizează menținerea plămânilor într-o stare expandată. Mult mai important este însă rolul surfactantului în prevenirea instabilității alveolare, după cum urmează. Conform legii Laplace, presiunea
Fiziologie umană: funcțiile vegetative by Ionela Lăcrămioara Serban, Walther Bild, Dragomir Nicolae Serban () [Corola-publishinghouse/Science/1306_a_2286]
-
de celulele epiteliale specializate din peretele alveolar, numite pneumocite de tip II (fig. 67). In ansamblul mecanic toracopulmonar tensiunea superficială redusă a surfactantului favorizează menținerea plămânilor într-o stare expandată. Mult mai important este însă rolul surfactantului în prevenirea instabilității alveolare, după cum urmează. Conform legii Laplace, presiunea transmurală este proporțională cu tensiunea parietală și invers proporțională cu raza (r); . Când raza scade componenta elastică a tensiunii parietale scade și ea, relativ uniform pentru toate alveolele (parenchimul pulmonar este relativ uniform din
Fiziologie umană: funcțiile vegetative by Ionela Lăcrămioara Serban, Walther Bild, Dragomir Nicolae Serban () [Corola-publishinghouse/Science/1306_a_2286]
-
cu raza (r); . Când raza scade componenta elastică a tensiunii parietale scade și ea, relativ uniform pentru toate alveolele (parenchimul pulmonar este relativ uniform din punct de vedere elastic). Rămâne problema cuantumului de tensiune parietală determinat de tensiunea superficială. Instabilitatea alveolară este determinată de tendința crescândă a alveolelor de a se colaba pe măsură ce își micșorează diametrul și s-ar putea manifesta efectiv datorită neomogenității dimensiunilor alveolare. Cu alte cuvinte, alveolele care sunt mai mici, sau mai puțin destinse la un moment
Fiziologie umană: funcțiile vegetative by Ionela Lăcrămioara Serban, Walther Bild, Dragomir Nicolae Serban () [Corola-publishinghouse/Science/1306_a_2286]
-
punct de vedere elastic). Rămâne problema cuantumului de tensiune parietală determinat de tensiunea superficială. Instabilitatea alveolară este determinată de tendința crescândă a alveolelor de a se colaba pe măsură ce își micșorează diametrul și s-ar putea manifesta efectiv datorită neomogenității dimensiunilor alveolare. Cu alte cuvinte, alveolele care sunt mai mici, sau mai puțin destinse la un moment dat, ar avea o tendință mai mare de a se colaba dacă tensiunea superficială ar rămâne constantă, deoarece la o rază mai mică aceeași tensiune
Fiziologie umană: funcțiile vegetative by Ionela Lăcrămioara Serban, Walther Bild, Dragomir Nicolae Serban () [Corola-publishinghouse/Science/1306_a_2286]
-
mici, sau mai puțin destinse la un moment dat, ar avea o tendință mai mare de a se colaba dacă tensiunea superficială ar rămâne constantă, deoarece la o rază mai mică aceeași tensiune superficială s ar reflecta într-o presiune alveolară crescută, cu împingerea aerului spre alveole mai mari. Compoziția surfactantului împiedică acest fenomen, deoarece pe măsura micșorării alveolei numărul de molecule tensioactive care se găsesc pe unitatea de suprafață lichidiană crește și ca urmare tensiunea superficială nu rămâne constantă, ci
Fiziologie umană: funcțiile vegetative by Ionela Lăcrămioara Serban, Walther Bild, Dragomir Nicolae Serban () [Corola-publishinghouse/Science/1306_a_2286]
-
în cursul inspirului. In orice condiții care necesită contracția mușchilor expiratori, o componentă expiratorie se adaugă la valoarea lucrului mecanic, cum este cazul în expir forțat, tahipnee, rezistență crescută a căilor respiratorii sau complianță toraco-pulmonară diminuată. 18.5. Efectul ventilator alveolar al aerului vehiculat Ventilația totală și alveolară Presupunând că volumul de aer expirat este de ~500 ml, iar frecvența respiratorie este de 15 respirații/minut putem calcula volumul total de aer care părăsește plămânul în fiecare minut (7500 ml/minut
Fiziologie umană: funcțiile vegetative by Ionela Lăcrămioara Serban, Walther Bild, Dragomir Nicolae Serban () [Corola-publishinghouse/Science/1306_a_2286]
-
necesită contracția mușchilor expiratori, o componentă expiratorie se adaugă la valoarea lucrului mecanic, cum este cazul în expir forțat, tahipnee, rezistență crescută a căilor respiratorii sau complianță toraco-pulmonară diminuată. 18.5. Efectul ventilator alveolar al aerului vehiculat Ventilația totală și alveolară Presupunând că volumul de aer expirat este de ~500 ml, iar frecvența respiratorie este de 15 respirații/minut putem calcula volumul total de aer care părăsește plămânul în fiecare minut (7500 ml/minut). Acest volum este cunoscut sub numele de
Fiziologie umană: funcțiile vegetative by Ionela Lăcrămioara Serban, Walther Bild, Dragomir Nicolae Serban () [Corola-publishinghouse/Science/1306_a_2286]
-
părăsește plămânul în fiecare minut (7500 ml/minut). Acest volum este cunoscut sub numele de ventilație totală sau volum - minut. Volumul de aer care intră în plămân este puțin mai mare; nu toată cantitatea de aer care pătrunde până la nivel alveolar participă la schimburile gazoase de la acest nivel. Din cantitatea de 500 ml de aer inspirată, aproximativ 150 ml rămâne în spațiul mort anatomic. Acesta cuprinde aerul care nu participă la schimburile gazoase alveolo-capilare, adică volumul de aer prezent la nivelul
Fiziologie umană: funcțiile vegetative by Ionela Lăcrămioara Serban, Walther Bild, Dragomir Nicolae Serban () [Corola-publishinghouse/Science/1306_a_2286]
-
crește în cazul inspirului profund datorită tracțiunii exercitate asupra bronhiilor de către parenchimul pulmonar înconjurător. Astfel, volumul de aer proaspăt care ajunge în zona respiratorie în fiecare minut este (500 - 150) x 15 = 5250 ml/minut și poartă numele de ventilație alveolară; are o importanță deosebită deoarece reprezintă cantitatea de aer proaspăt inspirat disponibil pentru schimburile gazoase. Fluxul de aer și difuzia la nivelul căilor aeriene Sistemul de căi aeriene care participă la ventilație se bifurcă succesiv în ramuri de dimensiuni din ce în ce mai
Fiziologie umană: funcțiile vegetative by Ionela Lăcrămioara Serban, Walther Bild, Dragomir Nicolae Serban () [Corola-publishinghouse/Science/1306_a_2286]
-
este mai important la nounăscut decât la adult. Blocarea tranzitorie bilaterală a nervilor vagi prin anestezie locală la pacienții conștienți nu determină modificări ale volumului respirator sau ale frecvenței respiratorii. Receptorii J Receptorii “juxtacapilari” (receptori J) se găsesc în peretele alveolar lângă capilare. Impulsurile care pleacă de la acești receptori merg pe calea nervului vag, lent (prin fibre nemielinizate) și determină respirație rapidă, superficială; stimularea lor intensă produce apnee. Distensia capilarelor pulmonare și creșterea volumului lichidului interstițial activează acești receptori. Receptorii J
Fiziologie umană: funcțiile vegetative by Ionela Lăcrămioara Serban, Walther Bild, Dragomir Nicolae Serban () [Corola-publishinghouse/Science/1306_a_2286]
-
de hiperventilație, iar încălzirea pielii determină hiperventilație (diferită de creșterea ventilației observată în cazul febrei, care este parte a răspunsului global la stimularea termoreceptorilor hipotalamici). 18.6.6. Centrii nervoși Ciclul respirator este o alternanță inspir expir, care asigură ventilația alveolară și care se bazează în esență pe automatismul centrului inspirator bulbar. Acesta este permanent controlat de alți nuclei respiratori bulbopontini și influențat de diverse structuri nervoase corticale și subcorticale, care permit integrarea vegetativ-emoțională. Controlul voluntar al inspirului și expirului se
Fiziologie umană: funcțiile vegetative by Ionela Lăcrămioara Serban, Walther Bild, Dragomir Nicolae Serban () [Corola-publishinghouse/Science/1306_a_2286]
-
fi o cauză a morții subite la copil. 18.6.8. Controlul integrativ al mișcarilor respiratorii Mecanismele reflexe având substratul morfo funcțional reflex descris mai sus sunt utilizate în primul rând în procese complexe de adaptare a ratei de ventilație alveolară la necesitățile organismului privind aportul de O2 și eliminarea de CO2, dar pot fi integrate într-o multitudine de alte activități: reflexe de apărare, efort fizic, fonație și limbaj articulat, etc. Răspunsul la bioxidul de carbon și la pH Cel
Fiziologie umană: funcțiile vegetative by Ionela Lăcrămioara Serban, Walther Bild, Dragomir Nicolae Serban () [Corola-publishinghouse/Science/1306_a_2286]
-
care reducerea pO2 arterial stimulează ventilația poate fi studiată pe un subiect care respiră un amestec hipoxic de gaze. Se măsoară pO2 și pCO2 în volumul curent. Creșterea pCO2 (prin modificarea amestecului inspirat) crește ventilația indiferent de pO2. Când pCO2 alveolară este menținută la 36 mm Hg, pO2 alveolară poate fi redusă până aproape de 50 mm Hg fără vreo creștere apreciabilă a ventilației, iar când pCO2 este crescută, reducerea pO2 sub 100 mm Hg produce o oarecare stimulare a ventilației. Astfel
Fiziologie umană: funcțiile vegetative by Ionela Lăcrămioara Serban, Walther Bild, Dragomir Nicolae Serban () [Corola-publishinghouse/Science/1306_a_2286]
-
studiată pe un subiect care respiră un amestec hipoxic de gaze. Se măsoară pO2 și pCO2 în volumul curent. Creșterea pCO2 (prin modificarea amestecului inspirat) crește ventilația indiferent de pO2. Când pCO2 alveolară este menținută la 36 mm Hg, pO2 alveolară poate fi redusă până aproape de 50 mm Hg fără vreo creștere apreciabilă a ventilației, iar când pCO2 este crescută, reducerea pO2 sub 100 mm Hg produce o oarecare stimulare a ventilației. Astfel, efectele combinate ale ambilor stimuli depășesc suma fiecărui
Fiziologie umană: funcțiile vegetative by Ionela Lăcrămioara Serban, Walther Bild, Dragomir Nicolae Serban () [Corola-publishinghouse/Science/1306_a_2286]
-
pO2 sub 100 mm Hg produce o oarecare stimulare a ventilației. Astfel, efectele combinate ale ambilor stimuli depășesc suma fiecărui stimul luat separat. Sunt utilizați diverși indici ai sensibilității hipoxice. Unul dintre aceștia este creșterea ventilației când pO2 arterială (sau alveolară) este redusă de la 100 mm Hg la 40 mm Hg (așa numitul V40). Valoarea medie la un subiect normal este de ~ 35 l/minut. Un alt indice care este uneori folosit în laboratoarele de testare a funcției respiratorii se bazează
Fiziologie umană: funcțiile vegetative by Ionela Lăcrămioara Serban, Walther Bild, Dragomir Nicolae Serban () [Corola-publishinghouse/Science/1306_a_2286]