920 matches
-
a ordinii de integrare. Penultima egalitate s-a obținut prin schimbarea de variabilă în integrala interioară: formula 61 Distributivitatea convoluției față de adunare rezultă din liniaritatea integralei (1) prin raport cu formula 62, cât și prin raport cu formula 63 Cu aceasta formula 42 devine algebră Banach. TEOREMA 2. Fie formula 65 și formula 66 Atunci formula 67 este definită printr-o integrală de tipul (1) pentru aproape orice formula 68, formula 69 și formula 70 "Demonstrație". Pentru formula 71 rezultatul este conținut în teorema precedentă. formula 75 de unde, cum formula 76 cu teorema precendentă
Funcții p-sumabile și funcții local p-sumabile () [Corola-website/Science/328926_a_330255]
-
cauză precizează că se cunosc simultan și cu exactitate poziția și impulsul unei particule, oricare ar fi timpul t. Cu toate acestea, ecuațiile pot fi generalizate pentru a fi apoi extinse la mecanica cuantică, precum și la mecanica clasică, prin deformarea algebrei Poisson peste "p" și "q" pentru o algebră de paranteze Moyal. Mai precis, sub o formă mai generală ecuația lui Hamilton se scrie: unde "f" este o funcție de "p" și "q", iar " H" hamiltonianul. Pentru a afla regulile de evaluare
Mecanică hamiltoniană () [Corola-website/Science/317831_a_319160]
-
exactitate poziția și impulsul unei particule, oricare ar fi timpul t. Cu toate acestea, ecuațiile pot fi generalizate pentru a fi apoi extinse la mecanica cuantică, precum și la mecanica clasică, prin deformarea algebrei Poisson peste "p" și "q" pentru o algebră de paranteze Moyal. Mai precis, sub o formă mai generală ecuația lui Hamilton se scrie: unde "f" este o funcție de "p" și "q", iar " H" hamiltonianul. Pentru a afla regulile de evaluare a unei paranteze Poisson, fără a recurge la
Mecanică hamiltoniană () [Corola-website/Science/317831_a_319160]
-
sub o formă mai generală ecuația lui Hamilton se scrie: unde "f" este o funcție de "p" și "q", iar " H" hamiltonianul. Pentru a afla regulile de evaluare a unei paranteze Poisson, fără a recurge la ecuații diferentiale, a se vedea algebra Lie, care specifică: o paranteză Poisson este numele pentru o paranteză Lie într-o algebră Poisson. Aceste paranteze Poisson pot fi extinse la paranteze Moyal, corespunzătoare unei algebre Lie neechivalentă, după cum a dovedit H Groenewold, descriind difuzia din mecanica cuantică
Mecanică hamiltoniană () [Corola-website/Science/317831_a_319160]
-
p" și "q", iar " H" hamiltonianul. Pentru a afla regulile de evaluare a unei paranteze Poisson, fără a recurge la ecuații diferentiale, a se vedea algebra Lie, care specifică: o paranteză Poisson este numele pentru o paranteză Lie într-o algebră Poisson. Aceste paranteze Poisson pot fi extinse la paranteze Moyal, corespunzătoare unei algebre Lie neechivalentă, după cum a dovedit H Groenewold, descriind difuzia din mecanica cuantică în spațiul fazelor (a se vedea principiul de incertitudine și cuantificare Weyl). Această abordare algebrică
Mecanică hamiltoniană () [Corola-website/Science/317831_a_319160]
-
unei paranteze Poisson, fără a recurge la ecuații diferentiale, a se vedea algebra Lie, care specifică: o paranteză Poisson este numele pentru o paranteză Lie într-o algebră Poisson. Aceste paranteze Poisson pot fi extinse la paranteze Moyal, corespunzătoare unei algebre Lie neechivalentă, după cum a dovedit H Groenewold, descriind difuzia din mecanica cuantică în spațiul fazelor (a se vedea principiul de incertitudine și cuantificare Weyl). Această abordare algebrică, nu numai că permite prelungirea probabilității de distribuție din spațiul fazelor la probabilitatea
Mecanică hamiltoniană () [Corola-website/Science/317831_a_319160]
-
care păstrează volumul în spațiul fazelor conform teoremei lui Liouville. Colecția simplectomorfismelor indusă de fluxul Hamiltonian este numită mecanica Hamiltoniană a unui sistem Hamiltonian. Structura simplectică induce o paranteză Poisson, iar paranteza Poisson dă spațiul funcțiilor pe structura mulțimii unei algebre Lie. Fiind dată funcția "f", aven: Dacă avem o probabilitate de distribuție ρ, deoarece viteza din spațiul fazelor (formula 33) are divergența egală cu zero și probabilitatea se conservă, derivata ei convectivă este zero și putem scrie: Aceasta se numește teorema
Mecanică hamiltoniană () [Corola-website/Science/317831_a_319160]
-
dată de teorema Chow-Rashevskii. Un exemplu simplu de submulțime Riemanniană este grupul Heisenberg real. Pentru acest grup Hamiltonianul este dat de: formula 40 nefiind implicat în Hamiltonian. Sistemele Hamiltoniene pot fi generalizate în diverse feluri. În loc de privi în mod simplist la algebra funcțiilor netede peste o mulțime simplectică, mecanica Hamiltoniană poate fi formulată ca o algebră Poisson comutativă reală unitară. O "stare" este o funcțională liniară continuă pe algebra Poisson, înzestrată cu a topologie corespunzătoare, astfel încât, pentru orice element "A" al algebrei
Mecanică hamiltoniană () [Corola-website/Science/317831_a_319160]
-
Pentru acest grup Hamiltonianul este dat de: formula 40 nefiind implicat în Hamiltonian. Sistemele Hamiltoniene pot fi generalizate în diverse feluri. În loc de privi în mod simplist la algebra funcțiilor netede peste o mulțime simplectică, mecanica Hamiltoniană poate fi formulată ca o algebră Poisson comutativă reală unitară. O "stare" este o funcțională liniară continuă pe algebra Poisson, înzestrată cu a topologie corespunzătoare, astfel încât, pentru orice element "A" al algebrei, " A"² este un număr real nenegativ. O generalizare a celor expuse mai sus este
Mecanică hamiltoniană () [Corola-website/Science/317831_a_319160]
-
Hamiltoniene pot fi generalizate în diverse feluri. În loc de privi în mod simplist la algebra funcțiilor netede peste o mulțime simplectică, mecanica Hamiltoniană poate fi formulată ca o algebră Poisson comutativă reală unitară. O "stare" este o funcțională liniară continuă pe algebra Poisson, înzestrată cu a topologie corespunzătoare, astfel încât, pentru orice element "A" al algebrei, " A"² este un număr real nenegativ. O generalizare a celor expuse mai sus este dată de dinamica Nambu. O bună ilustrare a mecanicii Hamiltoniene este dată de
Mecanică hamiltoniană () [Corola-website/Science/317831_a_319160]
-
algebra funcțiilor netede peste o mulțime simplectică, mecanica Hamiltoniană poate fi formulată ca o algebră Poisson comutativă reală unitară. O "stare" este o funcțională liniară continuă pe algebra Poisson, înzestrată cu a topologie corespunzătoare, astfel încât, pentru orice element "A" al algebrei, " A"² este un număr real nenegativ. O generalizare a celor expuse mai sus este dată de dinamica Nambu. O bună ilustrare a mecanicii Hamiltoniene este dată de Hamiltonianul unei particule încărcate într-un câmp electromagnetic. În coordonate carteziene, adică formula 41
Mecanică hamiltoniană () [Corola-website/Science/317831_a_319160]
-
(n. 1899 la București - d. 1962 la București) a fost un matematician român cu contribuții în analiza matematică, teoria numerelor, algebră, mecanică generală și balistică. s-a născut în București în anul 1899. Familia sa era una modestă: ambii părinți erau profesori de educație muzicală. Pasiunea lui Ghermănescu pentru matematică s-a manifestat încă din primii ani de școală. Pe lângă pasiunea
Mihail Ghermănescu () [Corola-website/Science/326013_a_327342]
-
de elevii săi. Ținea conferințe cu caracter social și științific. În ceea ce privește activitatea științifică, Mihail Ghermănescu a abordat cu o mare ușurință domeniul analizei matematice, dar și cel al altor discipline de matematică pure sau aplicate. Are referințe și în domeniul algebrei (teoria ecuațiilor), al teoriei numerelor (ecuații diofantice), geometrie, mecanică generală și balistică. A fost primul matemtician român care s-a ocupat de noțiunea derivatei areolare, care l-a condus la integrarea unor sisteme de ecuații cu derivate parțiale. Astfel a
Mihail Ghermănescu () [Corola-website/Science/326013_a_327342]
-
vectoriale nu trebuie să fie neapărat obiecte reprezentabile prin săgeți, așa cum apar în exemplele amintite: vectorii sunt considerați ca abstracții matematice, obiecte cu proprietăți speciale, care în unele cazuri pot fi reprezentate sub forma unor săgeți. Spațiile vectoriale fac obiectul algebrei liniare și sunt bine caracterizate prin dimensiunea lor, care, aproximativ vorbind, specifică numărul de direcții independente în spațiu. Spații vectoriale infinit-dimensionale apar în mod natural în analiza matematică, ca , ale căror vectori sunt funcții. Aceste spații vectoriale sunt, în general
Spațiu vectorial () [Corola-website/Science/298212_a_299541]
-
obiecte fizice sau geometrice, cum ar fi . Aceasta, la rândul său, permite examinarea proprietăților locale ale varietăților prin tehnici de liniarizare. Spațiile vectoriale pot fi generalizate în mai multe moduri, ceea ce duce la mai multe noțiuni avansate în geometrie și algebra abstractă. Conceptul de spațiu vectorial va fi explicat în primul rând prin descrierea a două exemple concrete: Primul exemplu de spațiu vectorial constă din săgeți într-un plan, pornind de la un punct fix (originea). Acestea sunt folosite în fizică pentru
Spațiu vectorial () [Corola-website/Science/298212_a_299541]
-
se introduc tipuri particulare de spații vectoriale; vedeți mai jos. Adunarea vectorială și înmulțirea cu un scalar sunt operațiuni care îndeplinesc proprietatea de : și în pentru în , , în . Unele surse mai vechi menționează aceste proprietăți ca axiome separate. În limbajul algebrei abstracte, primele patru axiome pot fi subsumate prin impunerea condiției ca mulțimea de vectori să fie un grup abelian în raport cu adunarea. Restul de axiome conferă acestui grup o structură de -. Cu alte cuvinte, există un definit pe corpul în al
Spațiu vectorial () [Corola-website/Science/298212_a_299541]
-
În 1804, pentru a obține soluții geometrice fără utilizarea de coordonate, Bolzano a introdus anumite operațiuni pe puncte, linii și planuri, predecesoarele vectorilor. Lucrarea sa a fost apoi utilizată în conceperea de către Möbius în 1827. În 1828, sugera existența unei algebre care depășește nu numai algebra obișnuită, ci și algebra bidimensională creată de el în timp ce căuta o interpretare geometrică a numerelor complexe. Definiția vectorilor s-a bazat pe noțiunea lui Bellavitis de bipunct, un segment orientat din care un capăt este
Spațiu vectorial () [Corola-website/Science/298212_a_299541]
-
soluții geometrice fără utilizarea de coordonate, Bolzano a introdus anumite operațiuni pe puncte, linii și planuri, predecesoarele vectorilor. Lucrarea sa a fost apoi utilizată în conceperea de către Möbius în 1827. În 1828, sugera existența unei algebre care depășește nu numai algebra obișnuită, ci și algebra bidimensională creată de el în timp ce căuta o interpretare geometrică a numerelor complexe. Definiția vectorilor s-a bazat pe noțiunea lui Bellavitis de bipunct, un segment orientat din care un capăt este originea și altul o țintă
Spațiu vectorial () [Corola-website/Science/298212_a_299541]
-
de coordonate, Bolzano a introdus anumite operațiuni pe puncte, linii și planuri, predecesoarele vectorilor. Lucrarea sa a fost apoi utilizată în conceperea de către Möbius în 1827. În 1828, sugera existența unei algebre care depășește nu numai algebra obișnuită, ci și algebra bidimensională creată de el în timp ce căuta o interpretare geometrică a numerelor complexe. Definiția vectorilor s-a bazat pe noțiunea lui Bellavitis de bipunct, un segment orientat din care un capăt este originea și altul o țintă, și apoi elaborată în
Spațiu vectorial () [Corola-website/Science/298212_a_299541]
-
dotate cu operațiuni. În lucrarea sa sunt prezente conceptele de și dimensiune, precum și cea de produs scalar. În fapt, activitatea lui Grassmann din 1844 depășește cadrul spațiilor vectoriale, deoarece abordarea înmulțirii l-a condus pe el la ceea ce astăzi numim algebre. Peano a fost primul care a dat definiția modernă a spațiilor vectoriale și a aplicațiilor liniare în 1888. O dezvoltare importantă în domeniul spațiilor vectoriale se datorează construcției de către Lebesgue. Ulterior, aceasta a fost formalizată de către Banach și Hilbert, în preajma
Spațiu vectorial () [Corola-website/Science/298212_a_299541]
-
a dat definiția modernă a spațiilor vectoriale și a aplicațiilor liniare în 1888. O dezvoltare importantă în domeniul spațiilor vectoriale se datorează construcției de către Lebesgue. Ulterior, aceasta a fost formalizată de către Banach și Hilbert, în preajma anului 1920. La acea vreme, algebra și noul domeniu al au început să interacționeze, în special cu concepte-cheie, cum ar fi spațiile de funcții "p"-integrabile și spațiile Hilbert. Spațiile vectoriale, inclusiv cele infinit-dimensionale, au devenit mai târziu noțiuni ferm stabilite, și multe ramuri matematice au
Spațiu vectorial () [Corola-website/Science/298212_a_299541]
-
ca reprezentând perechea ordonată în planul complex atunci vom vedea că regulile pentru sumă și produs scalar corespund exact cu cele din exemplul anterior. Mai mult, în general, oferă o altă clasă de exemple de spații vectoriale, în special în algebră și : un corp conține un este spațiu vectorial peste "E", prin operațiunile de înmulțire de adunare din "F". De exemplu, numerele complexe sunt un spațiu vectorial peste R, iar extensia de corp formula 1 este un spațiu vectorial peste Q. Funcțiile
Spațiu vectorial () [Corola-website/Science/298212_a_299541]
-
spațiu vectorial "X" și "orice "aplicație biliniară , există o aplicație unică "u", arătată în diagramă cu o săgeată punctată, a cărei cu "f" este egal cu "g": . Aceasta se numește a produsului tensorial, un exemplu de metodă mult utilizată în algebra abstractă avansată—pentru a defini indirect obiecte prin specificarea unor aplicații definite pe acel obiect sau cu valori în el. Din punctul de vedere al algebrei liniare, spațiile vectoriale sunt complet înțelese în măsura în care orice spațiu vectorial este caracterizat, până la izomorfism
Spațiu vectorial () [Corola-website/Science/298212_a_299541]
-
g": . Aceasta se numește a produsului tensorial, un exemplu de metodă mult utilizată în algebra abstractă avansată—pentru a defini indirect obiecte prin specificarea unor aplicații definite pe acel obiect sau cu valori în el. Din punctul de vedere al algebrei liniare, spațiile vectoriale sunt complet înțelese în măsura în care orice spațiu vectorial este caracterizat, până la izomorfism, prin dimensiunea sa. Cu toate acestea, spațiile vectoriale "în sine" nu oferă un cadru de abordare a chestiunii—cruciale pentru analiză—dacă un șir de funcții
Spațiu vectorial () [Corola-website/Science/298212_a_299541]
-
orice spațiu vectorial este caracterizat, până la izomorfism, prin dimensiunea sa. Cu toate acestea, spațiile vectoriale "în sine" nu oferă un cadru de abordare a chestiunii—cruciale pentru analiză—dacă un șir de funcții converge către o altă funcție. De asemenea, algebră liniară nu este adaptată pentru a trata șiruri infinite, deoarece operația aditivă permite adunarea numai a unui număr finit de termeni. Prin urmare, nevoile impun considerarea unor structuri suplimentare. Unui spațiu vectorial i se poate da o relație de ordine
Spațiu vectorial () [Corola-website/Science/298212_a_299541]