2,504 matches
-
3 deschiderea altor tipuri de canale de potasiu (IK1, IKr, IKo) determină repolarizare completă și relativ rapidă, pe măsură ce canalele lente de tip L se închid. In sfârșit, în faza 4 se reinstalează potențialul de repaus și se restabilește și asimetria ionică în regiunea sarcolemală respectivă, prin acțiunea intensă a pompei Na/K. In miocitele atriale contractile potențialul de acțiune seamănă cu cel din ventricul, dar are platou scurt și cu aspect descendent fig. 35). Pe parcursul potențialului de acțiune excitabilitatea se modifică
Fiziologie umană: funcțiile vegetative by Ionela Lăcrămioara Serban, Walther Bild, Dragomir Nicolae Serban () [Corola-publishinghouse/Science/1306_a_2286]
-
prin auto regenerare bazată pe depolarizarea indusă de difuzia laterală a ionilor în imediata vecinătate a plasmalemei. Viteza de conducere depinde de caracteristicile potențialului de acțiune (amplitudine și panta depolarizarii) și de densitatea căilor transmembranare cu rezistență electrică scăzută: canale ionice și alte căi hidrofile ce permit trecerea ionilor. Viteza de propagare a impulsului variază mult în ansamblul miocardului și este cel mai bine descrisă de imaginea globală a diagramei spațiale a latenței (deplasarea frontului de depolarizare, de la declanșarea impulsului în
Fiziologie umană: funcțiile vegetative by Ionela Lăcrămioara Serban, Walther Bild, Dragomir Nicolae Serban () [Corola-publishinghouse/Science/1306_a_2286]
-
umoral al microcirculației Aportul sanguin este eficient adaptat mai multor necesități tisulare: aport de oxigen și nutrimente (glucoză, acizi grași, aminoacizi), îndepărtarea bioxidului de carbon și ionilor de hidrogen, aducerea la celulele țintă a diverselor substanțe bioactive, limitarea variațiilor concentrațiilor ionice în interstițiu. In multe organe funcții speciale depind direct de o perfuzie sanguină adecvată. Astfel sunt termoliza cutanată si excreția renală. Controlul pe termen scurt (secunde, minute) este realizat prin modificarea diametrului arterial ca rezultat al modificării tonusului mușchiului neted
Fiziologie umană: funcțiile vegetative by Ionela Lăcrămioara Serban, Walther Bild, Dragomir Nicolae Serban () [Corola-publishinghouse/Science/1306_a_2286]
-
rata de difuzie pentru molecule polare și ioni este mai mică decât în alte teritorii vasculare și scade cu creșterea masei moleculare. Rolul fiziologic al acestei bariere ar putea fi unul protector, de exemplu față de toxine, sau menținerea extremei homeostazii ionice de la nivelul lichidului extracelular cerebral. Un alt rol poate fi de a preveni scurgerea sanguină a neuromediatorilor. Debitul sanguin cerebral poate fi evaluat pe baza principiului Fick, prin măsurarea concentrației arteriale și venoase de N2O după inhalarea de cantități subanestezice
Fiziologie umană: funcțiile vegetative by Ionela Lăcrămioara Serban, Walther Bild, Dragomir Nicolae Serban () [Corola-publishinghouse/Science/1306_a_2286]
-
o regiune compusă din macula densa, celulele mezangiale extraglomerulare și celulele granulare (fig. 97). Macula densa este alcătuită din celule epiteliale tubulare aglomerate pe partea dinspre glomerul, adiacentă arteriolei aferente. Această structură funcționează ca senzor de osmolaritate și de concentrație ionică, monitorizând compoziția lichidului din lumenul tubular. Celulele granulare (juxtaglomerulare sau JG) sunt celule musculare netede vasculare cu aspect epitelioid, localizate mai ales în arteriolele aferente. Funcția lor este de a sintetiza renină, prin intermediul căreia se reglează presiunea arterială, în cadrul sistemului
Fiziologie umană: funcțiile vegetative by Ionela Lăcrămioara Serban, Walther Bild, Dragomir Nicolae Serban () [Corola-publishinghouse/Science/1306_a_2286]
-
tubular (membrana apicală), epiteliul tubular (membrana bazolaterală), interstițiul renal (între celulele tubulare și endoteliul capilarelor peritubulare). Suprafața luminală a celulelor tubulare este foarte mare datorită marginii în perie cu care este dotată. La acest nivel există o multitudine de canale ionice și transportori proteici care asigură trecerea substanțelor hidrosolubile din lumenul tubular în celula tubulară. Ea prezintă o serie de joncțiuni strânse în zona periapicală, în așa fel încât epiteliul tubular este relativ impermeabil pentru apă și solviți. Mecanismul principal care
Fiziologie umană: funcțiile vegetative by Ionela Lăcrămioara Serban, Walther Bild, Dragomir Nicolae Serban () [Corola-publishinghouse/Science/1306_a_2286]
-
vedere fiziologic este lichidul transcelular (LTC), care variază de la 1 la 3% din greutatea corporală. Lichidele transcelulare includ lichidul cefalo-rahidian, umoarea apoasă a ochiului, secrețiile din tubul digestiv și ale organelor asociate, lichidul sinovial și altele. Lichidele transcelulare au compoziție ionică modificată și sunt lipsite de proteine. Măsurarea compartimentelor lichidiene Măsurarea volumului total de apă se realizează prin metoda diluțiilor, folosind o cantitate cunoscută dintr-un indicator care se distribuie în mod omogen între compartimentele de explorat. Cel mai frecvent sunt
Fiziologie umană: funcțiile vegetative by Ionela Lăcrămioara Serban, Walther Bild, Dragomir Nicolae Serban () [Corola-publishinghouse/Science/1306_a_2286]
-
în momentul existenței unei hiponatremii semnificative. 26.3. Mecanisme specifice în homeostazia ionilor Toți ionii de importanță fiziologică au domenii de concentrație bine definite, menținute de mecanisme speciale reglatorii, la fel ca și nivelele de glucoză și alte substanțe non ionice din LEC. 26.3.1. Reglarea renală a sodiului Mecanismele ce reglează excreția sodiului sunt atât de precise încât sodiul corporal total variază cu doar câteva procente, în ciuda faptului că variațiile de aport pot fi extrem de mari. Sodiul se filtrează
Fiziologie umană: funcțiile vegetative by Ionela Lăcrămioara Serban, Walther Bild, Dragomir Nicolae Serban () [Corola-publishinghouse/Science/1306_a_2286]
-
excitabilității neuromusculare, producând spasme ale musculaturii scheletice. O concentrație crescută a calciului extracelular va duce la scăderea excitabilității neuromusculare, la astenie musculară, aritmii cardiace și alte tulburări, datorate mai ales capacității calciului de a se cupla cu proteinele-canal, alterând fluxurile ionice transmembranare și astfel potențialele celulare. Homeostazia calcică depinde de aportul alimentar și de capacitatea tractului gastro intestinal de a-l absorbi, de capacitatea osului de a-l stoca și elibera și în final, de capacitatea rinichiului de a-l elimina
Fiziologie umană: funcțiile vegetative by Ionela Lăcrămioara Serban, Walther Bild, Dragomir Nicolae Serban () [Corola-publishinghouse/Science/1306_a_2286]
-
bifazică, mai întâi rapidă până la restabilirea parțială a potențialului de membrană și apoi lentă. Pe măsura perfecționării mijloacelor de înregistrare intracelulară au fost studiate amănunțit particularitățile potențialului de acțiune, comparativ la neuronii S și AH și interspecii precum și biologia canalelor ionice membranare enteroneuronale. Studiile recente de enteroneurobiologie au reușit să coreleze criteriile morfologic și fiziologic în profile funcționale care au permis clasificarea neuronilor enterici în enteroneuroni motori, neuroni senzitivi intrinseci sau intrinseci aferenți primari (IPAN) și interneuroni. I.2.2.10
Sistemul nervos vegetativ Anatomie, fiziologie, fiziopatologie by I. HAULICĂ () [Corola-publishinghouse/Science/100988_a_102280]
-
rezultat creșterea Ca2+ intracelular. Astfel CEG susțin, stabilizează și adaptează permanent SNE la modificările de formă și metabolice ale peretelui intestinal. Mai mult CEG controlează activitatea canalelor de K+ prevenind acumularea K+ extracelular care perturbă transmisia sinaptică și dinamica canalelor ionice ale enteroneuronilor. Funcția homeostazică a enterogliei este esențială pentru homeostazia SNE și este demonstrat experimental că distrugerea celulelor enterogliale are drept rezultat mai întâi alterarea codului chimic și, în final, degenerarea neuronilor enterici. Transportul unor dipeptide care contribuie la clearance-ul
Sistemul nervos vegetativ Anatomie, fiziologie, fiziopatologie by I. HAULICĂ () [Corola-publishinghouse/Science/100988_a_102280]
-
Datorită permeabilității membranare de aproximativ 100 ori mai mare pentru ionii de K+ decât pentru ionii de Na+, aceștia difuzează în sens invers și în măsură inegală prin membrana celulară realizând modificarea gradientului de concentrație a membranei. La baza distribuției ionice inegale stau reacții de transfer transmembranar prin difuziune, permeabilitate selectivă și transport ionic activ contra gradientului de concentrație. Spre deosebire de procesele pasive de difuziune care contribuie majoritar la scurgerea în afara celulei a ionilor de K+ și la realizarea potențialului membranar de
Sistemul nervos vegetativ Anatomie, fiziologie, fiziopatologie by I. HAULICĂ () [Corola-publishinghouse/Science/100988_a_102280]
-
decât pentru ionii de Na+, aceștia difuzează în sens invers și în măsură inegală prin membrana celulară realizând modificarea gradientului de concentrație a membranei. La baza distribuției ionice inegale stau reacții de transfer transmembranar prin difuziune, permeabilitate selectivă și transport ionic activ contra gradientului de concentrație. Spre deosebire de procesele pasive de difuziune care contribuie majoritar la scurgerea în afara celulei a ionilor de K+ și la realizarea potențialului membranar de repaus, permeabilitatea selectivă a Na+ prin canale ionice cu poartă sau fără poartă
Sistemul nervos vegetativ Anatomie, fiziologie, fiziopatologie by I. HAULICĂ () [Corola-publishinghouse/Science/100988_a_102280]
-
difuziune, permeabilitate selectivă și transport ionic activ contra gradientului de concentrație. Spre deosebire de procesele pasive de difuziune care contribuie majoritar la scurgerea în afara celulei a ionilor de K+ și la realizarea potențialului membranar de repaus, permeabilitatea selectivă a Na+ prin canale ionice cu poartă sau fără poartă, întregește diferența de încărcare ionică a membranelor. Ionii de Na+ și K+ având încărcătură electrică, gradientele lor de concentrație diferite tind să deplaseze K+ în afara celulei și Na+ în interiorul acesteia, fenomen limitat de canalele ionice
Sistemul nervos vegetativ Anatomie, fiziologie, fiziopatologie by I. HAULICĂ () [Corola-publishinghouse/Science/100988_a_102280]
-
concentrație. Spre deosebire de procesele pasive de difuziune care contribuie majoritar la scurgerea în afara celulei a ionilor de K+ și la realizarea potențialului membranar de repaus, permeabilitatea selectivă a Na+ prin canale ionice cu poartă sau fără poartă, întregește diferența de încărcare ionică a membranelor. Ionii de Na+ și K+ având încărcătură electrică, gradientele lor de concentrație diferite tind să deplaseze K+ în afara celulei și Na+ în interiorul acesteia, fenomen limitat de canalele ionice selective și contrabalansat de ATP-aza (Na+-K+) membranară, în vederea restabilirii
Sistemul nervos vegetativ Anatomie, fiziologie, fiziopatologie by I. HAULICĂ () [Corola-publishinghouse/Science/100988_a_102280]
-
ionice cu poartă sau fără poartă, întregește diferența de încărcare ionică a membranelor. Ionii de Na+ și K+ având încărcătură electrică, gradientele lor de concentrație diferite tind să deplaseze K+ în afara celulei și Na+ în interiorul acesteia, fenomen limitat de canalele ionice selective și contrabalansat de ATP-aza (Na+-K+) membranară, în vederea restabilirii potențialului membranar de repaus. Acumularea sarcinilor pozitive pe fața externă a membranei celulare, dublată de deficitul de sarcini negative interne asigură polaritatea membranară de repaus și existența potențialului electric a
Sistemul nervos vegetativ Anatomie, fiziologie, fiziopatologie by I. HAULICĂ () [Corola-publishinghouse/Science/100988_a_102280]
-
polaritatea membranară de repaus și existența potențialului electric a membranei, ca principală condiție a excitabilității celulei. Forțele care influențează deplasarea ionilor de Na+ și K+ cu rol de particule încărcate electric, prin membrana celulară sunt reprezentate de: gradientul de concentrație ionică a celulei; gradientul electric realizat de atragerea sarcinilor ionice pozitive extracelulare de către cele negative intracelulare reprezentate de anioni nedifuzibili ai proteinelor celulare și ionii de Cl-; permeabilitatea selectivă a canalelor ionice cu rol de pori membranari cu poartă sau fără
Sistemul nervos vegetativ Anatomie, fiziologie, fiziopatologie by I. HAULICĂ () [Corola-publishinghouse/Science/100988_a_102280]
-
membranei, ca principală condiție a excitabilității celulei. Forțele care influențează deplasarea ionilor de Na+ și K+ cu rol de particule încărcate electric, prin membrana celulară sunt reprezentate de: gradientul de concentrație ionică a celulei; gradientul electric realizat de atragerea sarcinilor ionice pozitive extracelulare de către cele negative intracelulare reprezentate de anioni nedifuzibili ai proteinelor celulare și ionii de Cl-; permeabilitatea selectivă a canalelor ionice cu rol de pori membranari cu poartă sau fără poartă; activitatea enzimatică a ATP-azei (Na+-K+) membranare ca
Sistemul nervos vegetativ Anatomie, fiziologie, fiziopatologie by I. HAULICĂ () [Corola-publishinghouse/Science/100988_a_102280]
-
prin membrana celulară sunt reprezentate de: gradientul de concentrație ionică a celulei; gradientul electric realizat de atragerea sarcinilor ionice pozitive extracelulare de către cele negative intracelulare reprezentate de anioni nedifuzibili ai proteinelor celulare și ionii de Cl-; permeabilitatea selectivă a canalelor ionice cu rol de pori membranari cu poartă sau fără poartă; activitatea enzimatică a ATP-azei (Na+-K+) membranare ca pompă activă de transport a 3 ioni de Na+ în afara celulei și a 2 ioni de K+ în interiorul acesteia pentru fiecare moleculă
Sistemul nervos vegetativ Anatomie, fiziologie, fiziopatologie by I. HAULICĂ () [Corola-publishinghouse/Science/100988_a_102280]
-
-K+) membranare ca pompă activă de transport a 3 ioni de Na+ în afara celulei și a 2 ioni de K+ în interiorul acesteia pentru fiecare moleculă de ATP folosită la activarea pompei (fig. 22). Spre deosebire de ATP-aza (Na+-K+) care contracarează scurgerile ionice pentru a menține potențialul membranar de repaus și volumul celulei, canalele ionice sunt proteine complexe transmembranare de legătură și comunicare între mediul intra- și extracelular. I.3.1. MANIFESTĂRI ELECTRO-CHIMICE ALE CELULEI NERVOASE În cazul celulei nervoase, permeabilitatea membranei plasmatice
Sistemul nervos vegetativ Anatomie, fiziologie, fiziopatologie by I. HAULICĂ () [Corola-publishinghouse/Science/100988_a_102280]
-
în afara celulei și a 2 ioni de K+ în interiorul acesteia pentru fiecare moleculă de ATP folosită la activarea pompei (fig. 22). Spre deosebire de ATP-aza (Na+-K+) care contracarează scurgerile ionice pentru a menține potențialul membranar de repaus și volumul celulei, canalele ionice sunt proteine complexe transmembranare de legătură și comunicare între mediul intra- și extracelular. I.3.1. MANIFESTĂRI ELECTRO-CHIMICE ALE CELULEI NERVOASE În cazul celulei nervoase, permeabilitatea membranei plasmatice fiind de 100 ori mai mare pentru ionii de K+ decât pentru
Sistemul nervos vegetativ Anatomie, fiziologie, fiziopatologie by I. HAULICĂ () [Corola-publishinghouse/Science/100988_a_102280]
-
celor negative ale proteinelor anionice și clorului de pe fața internă a membranei neuronale, realizând dipolul electric al potențialului celular de repaus, a cărui valoare medie atinge - 90 mV. Acesta are la bază echilibrul forțelor electrochimice generate de gradientele de concentrație ionică ale membranei neuronale. Celula nervoasă fiind specializată în receptarea, procesarea, elaborarea și conducerea influxului nervos ca suport al transmiterii de informație, interdependența existentă între polaritatea electrică a membranei celulare și sistemul de transport ionic membranar, asigură capacitatea înaltă de răspuns
Sistemul nervos vegetativ Anatomie, fiziologie, fiziopatologie by I. HAULICĂ () [Corola-publishinghouse/Science/100988_a_102280]
-
electrochimice generate de gradientele de concentrație ionică ale membranei neuronale. Celula nervoasă fiind specializată în receptarea, procesarea, elaborarea și conducerea influxului nervos ca suport al transmiterii de informație, interdependența existentă între polaritatea electrică a membranei celulare și sistemul de transport ionic membranar, asigură capacitatea înaltă de răspuns specific a țesutului nervos la diverșii stimuli din mediul extern sau intern. Ca țesut excitabil prevăzut cu proprietăți specifice de producere și transmitere a semnalelor sosite pe diverse căi (electrice, chimice, termice, mecanice etc.
Sistemul nervos vegetativ Anatomie, fiziologie, fiziopatologie by I. HAULICĂ () [Corola-publishinghouse/Science/100988_a_102280]
-
care asigură conducerea semnalului la mică distanță; B)Potențiale de acțiune transmisibile la distanțe mari. Potențialul electric gradat constă în mici variații electrice locale (10-20 mV) de depolarizare, repolarizare și hiperpolarizare ale potențialului membranar de repaus produse de deschiderea canalelor ionice de Na+. Depolarizarea rezultată este limitată la mici zone ale membranei plasmatice generatoare de curenți locali și este proporțională cu intensitatea stimulului. Amplitudinea și viteza de deplasare a potențialului gradat fiind decremențială, scad progresiv cu creșterea distanței parcurse de la locul
Sistemul nervos vegetativ Anatomie, fiziologie, fiziopatologie by I. HAULICĂ () [Corola-publishinghouse/Science/100988_a_102280]
-
acțiune are la bază depolarizarea cu viteză maximă (1,5-2 msec) a membranei plasmatice neuronale de la valoarea potențialului de repaus variabilă între -70 și -90 mV până la limita superioară a depolarizării cu valoare maximă pozitivă de 130 mV. Conform teoriei ionice actuale, fenomenele electrice neuronale generatoare de potențiale de acțiune se desfășoară în următoarea ordine secvențială: Perioada de latență cu durată foarte scurtă (0,1 msec), în care începe intrarea Na+ la nivelul conului axonal de emergență prevăzut cu cel mai
Sistemul nervos vegetativ Anatomie, fiziologie, fiziopatologie by I. HAULICĂ () [Corola-publishinghouse/Science/100988_a_102280]