262 matches
-
Concentrația reziduală a colorantului va fi deci mai mare pentru concentrații inițiale de colorant mai mari. În cazul concentrațiilor mai mici raportul dintre numărul inițial de moli de colorant și situsurile de adsorbție disponibile este mic și, ca urmare, fracțiunea adsorbită devine independentă de concentrația inițială (Chatterjee și al., 2005; Chiou și Li, 2003; Chiou și al., 2004). La concentrații mai mari, numărul situsurilor de adsorbție disponibile devine mai mic și în consecință îndepărtarea coloranților depinde de concentrația inițială. La concentrații
Metode neconvenţionale de sorbţie a unor coloranţi by Viorica DULMAN, Simona Maria CUCU-MAN, Rodica MUREŞAN () [Corola-publishinghouse/Science/100974_a_102266]
-
mm (Annadurai și al., 2008). Este evident că pentru particulele mai mici, care au o arie a interfeței solid-lichid mai mare, viteza de adsorbție este mai mare. Se constată, de asemenea, o relație de dependență liniară între cantitatea de colorant adsorbit și mărimea particulelor. Acest efect se datorează probabil incapacității moleculelor mari de colorant de a pătrunde în structura internă de pori a chitosanului. 3.3.5.4. Gradul de hidratare al adsorbentului Pentru a stabili efectul hidratării granulelor, unii autori
Metode neconvenţionale de sorbţie a unor coloranţi by Viorica DULMAN, Simona Maria CUCU-MAN, Rodica MUREŞAN () [Corola-publishinghouse/Science/100974_a_102266]
-
entalpiei și entropiei poate fi eliberarea unui număr de molecule de apă. Adsorbția (poli)anionilor hidratați în rețeaua polimerului hidrofil perturbă inevitabil ordinea moleculeor de apă în mediul imediat învecinat și le eliberează în lichidul extern. Cu alte cuvinte, moleculele adsorbite sunt probabil atrase datorită interacțiunilor electrostatice la mare distanță între grupele încărcate opus. În cursul formării legăturilor ionice între colorant și polimer contraionul trebuie să câștige un grad mai mare de libertate și crește entropia. Valorile ΔH arată că adsorbția
Metode neconvenţionale de sorbţie a unor coloranţi by Viorica DULMAN, Simona Maria CUCU-MAN, Rodica MUREŞAN () [Corola-publishinghouse/Science/100974_a_102266]
-
2008a; 2008b) au studiat adsorbția unor coloranți cationici (Basic Blue 9, Basic Blue 3) pe chitosan grefat și au confirmat mecanismul de chimiosorbție prin interacțiuni electrostatice. Mecanismul de adsorbție depinde în principal de interacțiunea dintre suprafața chitosanului grefat și speciile adsorbite. Autorii au adăugat că mecanismul are loc și prin adsorbția fizică la suprafață și legături de hidrogen datorită rețelei polimerului, concluzionând că mecanismul este un proces complex care are loc în mai multe etape, iar alte interacțiuni, cum ar fi
Metode neconvenţionale de sorbţie a unor coloranţi by Viorica DULMAN, Simona Maria CUCU-MAN, Rodica MUREŞAN () [Corola-publishinghouse/Science/100974_a_102266]
-
în interacțiunea electrostatică cu grupele NH3+ ale microgranulelor. În plus, difuzia colorantului în porii adsorbentului este mai dificilă, deoarece colorantul are catene mai ramificate decât cel galben. Astfel, adsorbția colorantului albastru are loc practic doar la suprafața granulelor și cantitatea adsorbită scade cu creșterea temperaturii, la temperaturi mai mari procesul de desorbție a acestuia fiind mai eficient decât adsorbția. Colorantul Reactive Red RB prezintă cea mai ramificată structură chimică și cel mai mare număr de grupe SO3- disponibile (Figura 3.32
Metode neconvenţionale de sorbţie a unor coloranţi by Viorica DULMAN, Simona Maria CUCU-MAN, Rodica MUREŞAN () [Corola-publishinghouse/Science/100974_a_102266]
-
și al., 2000; Wu și al., 2001b), dar există și situații în care se caracterizează atât prin modelul Langmuir, cât și Freundlich (Kyzas și Lazaridis, 2009) sau Redlich-Peterson (Cheung și al., 2009). 3.3.7. Desorbție și reutilizare Recuperarea materialului adsorbit și regenerarea adsorbentului este importantă. Există un număr relativ limitat de studii de desorbție a coloranților de pe chitosan și derivați de chitosan. În Figura 3.33 este prezentată capacitatea de adsorbție a Reactive Red 189, desorbția și reutilizarea chitosanului (Chiou
Metode neconvenţionale de sorbţie a unor coloranţi by Viorica DULMAN, Simona Maria CUCU-MAN, Rodica MUREŞAN () [Corola-publishinghouse/Science/100974_a_102266]
-
mari (>60șC) și valori mari de pH (>10) ar putea conduce la hidroliza coloranților reactivi, ceea ce afectează rezultatele experimentale. În soluții bazice, grupele aminice încărcate pozitiv se deprotonează, astfel încât interacțiunea electrostatică între chitosan și colorant devine mai slabă, iar colorantul adsorbit părăsește situsul de adsorbție al chitosanului. După desorbție, are loc a doua etapă de adsorbție, care repetă forma dinamică similară a primei etape de adsorbție. Pentru a adsorbi o cantitate similară de colorant sunt necesare 7-10 ore, ceea ce arată că
Metode neconvenţionale de sorbţie a unor coloranţi by Viorica DULMAN, Simona Maria CUCU-MAN, Rodica MUREŞAN () [Corola-publishinghouse/Science/100974_a_102266]
-
o aglomerare mai mare, stabilă pentru un timp mai lung, astfel încât apare un singur pic al agregatului la 570 nm, fără modificări în timp. SWy-1, cu o densitate mai mică de sarcină, prezintă un comportament complet diferit. Moleculele de colorant, adsorbite inițial ca agregate la suprafața externă a argilei, se desfac cu formare de monomeri care migrează în spațiile interlamelare, dând naștere la benzile de absorbție de la 670 și 760 nm. Demirbas și al. (2002) au studiat utilizarea perlitului pentru îndepărtarea
Metode neconvenţionale de sorbţie a unor coloranţi by Viorica DULMAN, Simona Maria CUCU-MAN, Rodica MUREŞAN () [Corola-publishinghouse/Science/100974_a_102266]
-
Garfinkel-Shweky și Yariv, 1999), precum și a Alizarinei pe montmorillonit-Al (Epstein și Yariv, 2003). Alkan și al. (2004b) au studiat efectul tăriei ionice, al pH-ului și temperaturii asupra îndepărtării colorantului textil Acid Yellow 49 cu sepiolit. Cantitatea de colorant adsorbit crește cu creșterea tăriei ionice și a temperaturii, dar scade cu creșterea pH-ului, în timp ce adsorbția Acid Red 57 pe sepiolit se intensifică cu micșorarea pH-ului și a temperaturii și cu creșterea tăriei ionice (Alkan și al., 2004a). Cantitatea
Metode neconvenţionale de sorbţie a unor coloranţi by Viorica DULMAN, Simona Maria CUCU-MAN, Rodica MUREŞAN () [Corola-publishinghouse/Science/100974_a_102266]
-
Experimentele de îndepărtare a coloranților anionici Reactive Blue 221 și Acid Blue 62 pe sepiolit au arătat că probele de sepiolit calcinat la 200șC au capacitate maximă de adsorbție. Calcinarea la temperaturi mai mari conduce la scăderea cantității de colorant adsorbit (Alkan și al., 2005). Montmorillonitele cu sarcină redusă au fost, de asemenea, preparate prin încălzirea montmorillonit-Li la diferite temperaturi și utilizate pentru adsorbția Albastrului de metilen (Bujdak și Komadel, 1997). A fost studiată și adsorbția Albastrului de metilen pe
Metode neconvenţionale de sorbţie a unor coloranţi by Viorica DULMAN, Simona Maria CUCU-MAN, Rodica MUREŞAN () [Corola-publishinghouse/Science/100974_a_102266]
-
montmorillonitului crește de la 12,35 la 23,06 Å. Echilibrul de adsorbție este atins după 30 minute, iar procesul urmează o cinetică de pseudo-ordin doi. Izoterma Langmuir descrie adsorbția în domeniul de concentrație 20-160 mg L-1. Cantitatea de colorant adsorbită scade de la 98,04 la 3,74 mg g-1 cu variația pH-ului de la 2,8 la 12,1, pentru concentrația inițială a colorantului 100 mg L-1, adsorbția fiind favorizată în mediu acid. În domeniul de pH 6-8 cantitatea
Metode neconvenţionale de sorbţie a unor coloranţi by Viorica DULMAN, Simona Maria CUCU-MAN, Rodica MUREŞAN () [Corola-publishinghouse/Science/100974_a_102266]
-
scade de la 98,04 la 3,74 mg g-1 cu variația pH-ului de la 2,8 la 12,1, pentru concentrația inițială a colorantului 100 mg L-1, adsorbția fiind favorizată în mediu acid. În domeniul de pH 6-8 cantitatea adsorbită rămâne aproximativ constantă. La tratarea montmorillonit-Na+ cu soluția de intercalare (Cr-OH), Na+ schimbabil este înlocuit de speciile Cr-OH. Soluția Cr-OH conține în principal speciile trimere Cr3(OH)45+, urmate de speciile tetramere Cr4(OH)66+, monomere Cr(H2O)3+ și
Metode neconvenţionale de sorbţie a unor coloranţi by Viorica DULMAN, Simona Maria CUCU-MAN, Rodica MUREŞAN () [Corola-publishinghouse/Science/100974_a_102266]
-
în prezența Pb2+cu 10-20%, în ambele cazuri adsorbția fiind un proces cinetic de pseudo-ordin unu (Wang și Ariyanto, 2007). Clinoptilolitul este un adsorbent eficient și pentru colorantul Toluidine Blue O, în condiții de pH alcalin (11). Cantitatea de colorant adsorbit crește cu creșterea pH-ului, ceea ce se explică prin interacțiunea electrostatică dintre colorantul cationic și suprafața încărcată negativ a zeolitului (Alpat și al., 2008). Adsorbția se conformează modelului Langmuir, atingându-se capacitatea maximă de 1,92 10-4 mol g-1 la
Metode neconvenţionale de sorbţie a unor coloranţi by Viorica DULMAN, Simona Maria CUCU-MAN, Rodica MUREŞAN () [Corola-publishinghouse/Science/100974_a_102266]
-
celulelor, la pH 3,0 (Hu, 1992). Pentru fungul Trametes versicolor (biomasă nativă și tratată termic) s-a realizat și studiul legat de valorile unghiului de contact, obținute cu trei lichide test diferite (apă, glicerină și diiodometan) și cu colorant adsorbit (Tabelul 4.3). Probele testate au valori diferite ale unghiului de contact, depinzând de proprietățile de suprafață. Forma nativă a fungului a fost hidrofobică (θ > 900). După tratamentul termic, cele mai multe entități hidrofobice de pe suprafața celulelor au fost îndepărtate, conform măsurătorilor
Metode neconvenţionale de sorbţie a unor coloranţi by Viorica DULMAN, Simona Maria CUCU-MAN, Rodica MUREŞAN () [Corola-publishinghouse/Science/100974_a_102266]
-
b), indicând faptul că moleculele de colorant se leagă de biomasa protonată la pH 11. Grupele principale ale biomasei protonate (amino, carboxil și fosfat) au fost neschimbate în spectrele FTIR ale probelor de biomasă protonată și ale biomasei cu colorant adsorbit. Banda lărgită și intensă din domeniul 3200-3600 cm−1 poate fi datorată suprapunerii vibrațiilor de întindere OH și NH, care este însemnată la picurile de la 1115 și 1161 cm−1, caracteristice vibrațiilor de întindere C-O alcoolic și C-N
Metode neconvenţionale de sorbţie a unor coloranţi by Viorica DULMAN, Simona Maria CUCU-MAN, Rodica MUREŞAN () [Corola-publishinghouse/Science/100974_a_102266]
-
colorant. Figura 4.45 arată spectrul O1s al biomasei înainte și după sorbția RO16. Spectrul O1s al biomasei indică patru picuri (530,1; 531,3; 532,5 și 533,8 eV) atribuite oxigenului în O2-, C-OH, oxigenului din apa adsorbită și respectiv din C-O-C. Raportul ariei pentru picul de la 531,3 eV, atribuit C-OH, a descrescut semnificativ de la 41,93 la 34,00%, după sorbția RO16, iar raportul ariilor pentru picul de la 533,8 eV, atribuit C-O-C, a crescut
Metode neconvenţionale de sorbţie a unor coloranţi by Viorica DULMAN, Simona Maria CUCU-MAN, Rodica MUREŞAN () [Corola-publishinghouse/Science/100974_a_102266]
-
și creșterea numărului acestora descrește această proprietate. Colorantul Acid Yellow posedă două grupe sulfonice și acesta poate constitui un motiv al slabei legări a colorantului. În schimb, coloranții bazici datorită structurii lor cu încărcare pozitivă a grupărilor cromofore sunt ușor adsorbiți, atât de nămolul activ viabil, cât și de cel neviabil (Chu și Chen, 2002a, 2002b; Dohanyos și al., 1978; Hitz și al., 1978). Chu și Chen (2002a, 2002b) au studiat reținerea unor coloranți cu biomasa de nămol activ inactivat (prin
Metode neconvenţionale de sorbţie a unor coloranţi by Viorica DULMAN, Simona Maria CUCU-MAN, Rodica MUREŞAN () [Corola-publishinghouse/Science/100974_a_102266]
-
cu moleculele de colorant pentru situsurile de legare ale biosorbenților, sau pot stimula biosorbția. Studiile amestecurilor binare pot furniza informații suplimentare despre natura proceselor de sorbție, astfel ca fracțiunea situsurilor de adsorbție corespunzătoare pentru fiecare specie, interacțiunile secundare între speciile adsorbite. Este foarte important de a elucida alterarea proprietăților de adsorbție cauzate de efectele de competiție, sau de cooperare și de a înțelege mecanismele proceselor, pentru a putea prezice comportamentul de adsorbție a contaminanților în sisteme complexe. Gallanger și al. (1997
Metode neconvenţionale de sorbţie a unor coloranţi by Viorica DULMAN, Simona Maria CUCU-MAN, Rodica MUREŞAN () [Corola-publishinghouse/Science/100974_a_102266]
-
loofa (TVILS) de a adsorbi colorantul basic Methylene Blue (MB) a fost determinată prin cicluri de adsorbție-desorbție repetate, comparativ cu biomasa nativă (TVFB). Întrucât biosorbția maximă a MB s-a produs în condiții apropiate de pH neutru la bazic, MB adsorbit a fost recuperat în condiții de pH puternic acid. Eluentul HCl 0,1 M a favorizat desorbția colorantului cationic MB datorită repulsiei electrostatice (Saeed și al., 2009). S-a obținut o desorbție de >99% pentru ambii biosorbenți (TVFB și TVILS
Metode neconvenţionale de sorbţie a unor coloranţi by Viorica DULMAN, Simona Maria CUCU-MAN, Rodica MUREŞAN () [Corola-publishinghouse/Science/100974_a_102266]
-
curgere. O curbă de străpungere se obține prin reprezentarea grafică a concentrației colorantului, în funcție de timpul de curgere (t) sau volumul de efluent (Vef) pentru o grosime dată de pat. Modul de exprimare a concentrației colorantului poate fi: - concentrația de colorant adsorbit (Cad); - concentrația de intrare a colorantului (C0); - concentrația de ieșire a colorantului (C); - concentrația normalizată, care se definește ca raportul concentrației colorantului din efluent față de concentrația de intrare a colorantului (C/C0). Volumul de efluent (Vef) se calculează cu Ecuația
Metode neconvenţionale de sorbţie a unor coloranţi by Viorica DULMAN, Simona Maria CUCU-MAN, Rodica MUREŞAN () [Corola-publishinghouse/Science/100974_a_102266]
-
cu referire la volumul de curgere) poate fi calculat cu relația (4.25): Reținere (%) (4.25) Cantitatea de colorant reținută în coloană la echilibru (sau capacitatea coloanei) (qeq) este definită prin relația (4.26) ca fiind cantitatea totală de colorant adsorbit (qtotal) pe gram de biosorbent la sfârșitul biosorbției: (4.26) unde X este masa biosorbentului. Pentru proiectarea unui proces de adsorbție pe coloană este necesar a se prevedea profilul concentrație-timp (curba de străpungere) și capacitatea de adsorbție pentru un efluent
Metode neconvenţionale de sorbţie a unor coloranţi by Viorica DULMAN, Simona Maria CUCU-MAN, Rodica MUREŞAN () [Corola-publishinghouse/Science/100974_a_102266]
-
cu pH = 8.4. Se trece printr-o coloană cu diametrul de 1 cm, umplută cu oxid de aluminiu neutru. Coloana se spală cu 5 ml acetat de sodiu 0.2 mol/l și apoi cu 20 ml apă. Adrenalina adsorbită se eluează cu 1.5 ml acid acetic 0.2 mol/l, apoi se spală cu apă, de trei ori cu câte 1 ml. La 4 ml din soluția obținută se adaugă o picătură de clorură de fer (III); trebuie
Analiza Medicamentului - ?ndrumar de lucr?ri practice ? by DOINA LAZ?R ,ANDREIA CORCIOV? ,MIHAI IOAN LAZ?R () [Corola-publishinghouse/Science/83888_a_85213]
-
prin faza staționară datorită acțiunii capilare sau a greutății. Cromatografia de adsorbție utilizează o fază staționară solidă și o fază mobilă care este un lichid sau un gaz. Solutul poate fi adsorbit la suprafața particulelor solide, unde echilibrul dintre starea adsorbită și soluție produce separarea moleculelor solutului. În cromatografia de partiție faza staționară este un film subțire pe suprafața unui suport solid. Solutul stabilește un echilibru între lichidul staționar și faza mobilă (lichidă sau gazoasă). În cromatografia de schimb ionic anionii
CHIMIE FIZICĂ ȘI COLOIDALĂ by Alina Trofin () [Corola-publishinghouse/Science/703_a_1091]
-
sunt două lichide nemiscibile; c) suprafața interfazică este solidă: faza 1 este un solid iar faza 2 este gazoasă; d) suprafața de separare este solidă: faza 1 este solidă în contact cu faza 2 lichidă. După natura interacțiunii dintre substanța adsorbită și adsorbant, se deosebesc: adsorbția fizică (adsorbția van der Waals) - în acest caz, forțele atractive sunt de tip van der Waals (de dispersie, de inducție, de orientare) iar structura internă a particulelor adsorbite, respectiv distribuția electronilor de valență nu se
CHIMIE FIZICĂ ȘI COLOIDALĂ by Alina Trofin () [Corola-publishinghouse/Science/703_a_1091]
-
2 lichidă. După natura interacțiunii dintre substanța adsorbită și adsorbant, se deosebesc: adsorbția fizică (adsorbția van der Waals) - în acest caz, forțele atractive sunt de tip van der Waals (de dispersie, de inducție, de orientare) iar structura internă a particulelor adsorbite, respectiv distribuția electronilor de valență nu se modifică. Se manifestă la temperaturi joase și este caracterizată printr-o căldură de adsorbție mică (Q < 10 kcal/mol); adsorbția chimică (chemosorbția, adsorbția activată) - reținerea adsorbatului se face prin forțe de natură chimică
CHIMIE FIZICĂ ȘI COLOIDALĂ by Alina Trofin () [Corola-publishinghouse/Science/703_a_1091]