619 matches
-
Structura enzimelor poate fi exclusiv proteică, sau de natură heteroproteidică. Enzimele holoproteidice își exercită proprietățile catalitice prin intermediul unui centru activ (situs catalitic), dispus în diferite poziții ale catenelor polipeptidice. Acest centru conține grupări libere tio (-SH), carboxil (COOH), amino (-NH2), hidroxil (-OH) etc. Pepsina, papaina, tripsina, ribonucleaza, aparțin acestui tip. Enzimele heteroproteidice, care constituie majoritatea, au o parte proteică (apoenzima) și o componentă neproteică (cofactor). Apoenzima conferă specificitatea de acțiune (hidrolizează, oxidoreducere, transfer etc.) și specificitatea de substrat. Cofactorii enzimatici, pot
Materii prime horticole mai importante pentru industria alimentară. Struguri, fructe, legume. Cunoștințe de bază și aplicații practice by Dumitru D. Beceanu, Anghel Roxana Mihaela, Filimon V. Răzvan () [Corola-publishinghouse/Science/1627_a_3105]
-
ori mai puțin toxic decât cianidele. Tiocianatul este excretat de rinichi. În consecință, îndepărtarea cianidelor necesită funcție hepatică și renală adecvată și biodisponibilitate adecvată a tiosulfatului. Nitroprusiatul s-a demonstrat a cauza citotoxicitate prin eliberare de oxid nitric, de radicali hidroxil și peroxinitriți ce conduc la peroxidarea lipidică. Nitroprusiatul poate, de asemenea cauza citotoxicitate prin eliberarea de cianide care interferă cu respirația celulară. Toxicitatea cianidelor s-a demonstrat a sta la baza unor inexplicabile stopuri cardiace, stări de comă, encefalopatie, convulsii
Mic ghid al practicianului HIPERTENSIUNEA ARTERIALĂ by Florin Mitu () [Corola-publishinghouse/Science/1679_a_3046]
-
colorante pentru suportul pe care se depun. Pentru a conferi proprietăți tinctoriale substanțelor colorate este necesară introducerea grupărilor auxocrome în sistemul conjugat al colorantului. Principalii auxocromi întâlniți în structura coloranților sunt: gruparea amino (-NH2), gruparea aminică substituită (-NHR, -NR1R2), gruparea hidroxil (-OH, -OR), unde R reprezintă un radical alchil cu unul sau doi atomi de carbon (Forst, 1980; Mureșan, 1998). Natura, numărul și poziția auxocromilor pot influența culoarea unui colorant: Când moleculele substanțelor organice sunt expuse la radiații ce acoperă un
Metode neconvenţionale de sorbţie a unor coloranţi by Viorica DULMAN, Simona Maria CUCU-MAN, Rodica MUREŞAN () [Corola-publishinghouse/Science/100974_a_102266]
-
1604,0; 1346,6; 1120,8; 1053,3 cm-1. Multe dintre aceste benzi au fost raportate și de alți autori la investigarea diferitelor materiale carbonizate. Banda de la 3441,6 cm-1 poate fi atribuită vibrației de alungire -OH a grupelor funcționale hidroxil. Benzile de la 2352,6 și 2336,6 cm-1 sunt atribuite alungirii CC, picul de la 1627,7 cm-1 și 1604,0 cm-1 sunt caracteristice vibrației de alungire C=O din grupele lactonice și carbonil. Spectrul FTIR al cărbunelui activ indică și
Metode neconvenţionale de sorbţie a unor coloranţi by Viorica DULMAN, Simona Maria CUCU-MAN, Rodica MUREŞAN () [Corola-publishinghouse/Science/100974_a_102266]
-
Simionescu și al., 1989). Lemnul de stejar are aproximativ 38,42% celuloză, 22-32% lignină, 23-29% hemiceluloză și până la 10% substanțe extractibile (Simionescu și al., 1989). Pereții celulari ai rumegușului constau în principal din celuloză și lignină și conțin multe grupări hidroxil, provenite de la taninuri sau alți compuși fenolici. Toți acești componenți sunt compuși activi de schimb ionic. Lignina, al treilea component major al peretelui celular al lemnului este un material polimeric. Molecula de lignină este constituită dintr-un nucleu de fenilpropan
Metode neconvenţionale de sorbţie a unor coloranţi by Viorica DULMAN, Simona Maria CUCU-MAN, Rodica MUREŞAN () [Corola-publishinghouse/Science/100974_a_102266]
-
grupele NH, respectiv OH din molecula de colorant și atomii de oxigen ai celulozei. Implicarea electronilor neparticipanți ai atomilor de azot și respectiv oxigen ai acestor grupe în conjugarea electronică extinsă cu nucleele aromatice influențează puternic capacitatea grupelor amino, respectiv hidroxil de a forma legături de hidrogen pentru a asigura fixarea coloranților pe adsorbent. 3.2.3. Factori care influențează adsorbția coloranților pe rumegușuri 3.2.3.1. Influența pH-ului O problemă legată de rumegușuri este că sorbția este puternic
Metode neconvenţionale de sorbţie a unor coloranţi by Viorica DULMAN, Simona Maria CUCU-MAN, Rodica MUREŞAN () [Corola-publishinghouse/Science/100974_a_102266]
-
rumegușul prezintă o serie de diferențe, cum ar fi capacitatea mai mare de adsorbție pentru Acid Blue 25 și Reactive Yellow 23. Aceste diferențe pot fi atribuite unor factori, cum ar fi structura chimică a lemnului. În plus, toate grupele hidroxil (alcoolice din celuloză și alcoolice-fenolice din lignină) pot suferi modificarea chimică în condițiile tratării cu EPTMAC. Pentru același nivel de grefare, densitatea grupelor aminice cuaternare în funcțiunea celulozică a lemnului este mai mare decât în celuloza pură, în cazul căreia
Metode neconvenţionale de sorbţie a unor coloranţi by Viorica DULMAN, Simona Maria CUCU-MAN, Rodica MUREŞAN () [Corola-publishinghouse/Science/100974_a_102266]
-
ai fungilor, este cel mai abundent aminopolizaharid din natură. Acest material este un homopolimer liniar constituit din N-acetil-glucozamină legată β(1-4). Are structură similară cu celuloza, dar este un aminopolimer și are grupe acetamidă în poziția C-2 în locul grupelor hidroxil. Prezența acestor grupări este foarte avantajoasă, furnizând funcții caracteristice de adsorbție și posibilitatea participării la reacții de modificare chimică. Polimerul brut este extras doar din crustacee marine, în primul rând datorită cantităților mari de reziduuri disponibile ca produși secundari din
Metode neconvenţionale de sorbţie a unor coloranţi by Viorica DULMAN, Simona Maria CUCU-MAN, Rodica MUREŞAN () [Corola-publishinghouse/Science/100974_a_102266]
-
derivatizare); sensibilitate față de pH; utilizare limitată în adsorbția pe coloană (limitări hidrodinamice, colmatarea coloanei); proces nedistructiv. 3.3.2. Chitosan brut și materiale pe bază de chitosan Chitosanul are trei tipuri de grupe funcționale reactive, o grupă amino și grupele hidroxil primară și secundare din pozițiile C-2, C-3 și C-6. Avantajul său față de alte polizaharide este că structura sa chimică permite modificări specifice fără mari dificultăți, în special în poziția C-2. Aceste grupări funcționale permit reacții de
Metode neconvenţionale de sorbţie a unor coloranţi by Viorica DULMAN, Simona Maria CUCU-MAN, Rodica MUREŞAN () [Corola-publishinghouse/Science/100974_a_102266]
-
flexibilității catenei polimerice. Așadar, etapa chimică poate conduce la scăderea semnificativă a eficienței reținerii coloranților și capacității de adsorbție, în special în cazul reacțiilor chimice care implică grupări aminice, deoarece grupările aminice ale polimerului sunt mult mai active decât grupările hidroxil și pot fi mult mai ușor atacate de agenții de funcționalizare. În consecință, este important să se cunoască, controleze și caracterizeze condițiile reacției de funcționalizare deoarece acestea determină și permit reglarea densității de funcționalizare, care este parametrul principal care influențează
Metode neconvenţionale de sorbţie a unor coloranţi by Viorica DULMAN, Simona Maria CUCU-MAN, Rodica MUREŞAN () [Corola-publishinghouse/Science/100974_a_102266]
-
în primul rând, grupele aminice libere din chitosan sunt mult mai reactive și eficiente pentru a chelatiza poluanți, comparativ cu grupele acetil din chitină, și este indiscutabil că situsurile aminice sunt principalele grupe reactive pentru adsorbția coloranților (anionici), deși grupările hidroxil (în special în poziția C-3) pot contribui la adsorbție. Aproape toate proprietățile funcționale ale chitosanului depind de lungimea catenei, densitatea de sarcină și distribuția sarcinii și multe dintre proprietățile sale de sorbent derivă din natura sa cationică și comportamentul
Metode neconvenţionale de sorbţie a unor coloranţi by Viorica DULMAN, Simona Maria CUCU-MAN, Rodica MUREŞAN () [Corola-publishinghouse/Science/100974_a_102266]
-
fi că în condiții acide H+ din soluție pot protona grupele aminice ale chitosanului. Colorantul este însă adsorbit de chitosan în procent de 96-98% și pentru pH-ul inițial de 6-11. Acest comportament poate fi explicat și prin accesibilitatea grupelor hidroxil din chitosan. În condiții alcaline are loc deprotonarea grupelor hidroxil. Grupele hidroxil ale polimerului chitosan pot adsorbi colorantul prin legare covalentă, similar mecanismului de adsorbție a coloranților reactivi pe polimerii celulozici în procesul de vopsire. În procesele de vopsire se
Metode neconvenţionale de sorbţie a unor coloranţi by Viorica DULMAN, Simona Maria CUCU-MAN, Rodica MUREŞAN () [Corola-publishinghouse/Science/100974_a_102266]
-
grupele aminice ale chitosanului. Colorantul este însă adsorbit de chitosan în procent de 96-98% și pentru pH-ul inițial de 6-11. Acest comportament poate fi explicat și prin accesibilitatea grupelor hidroxil din chitosan. În condiții alcaline are loc deprotonarea grupelor hidroxil. Grupele hidroxil ale polimerului chitosan pot adsorbi colorantul prin legare covalentă, similar mecanismului de adsorbție a coloranților reactivi pe polimerii celulozici în procesul de vopsire. În procesele de vopsire se știe că gruparea -Cl a coloranților reactivi poate reacționa cu
Metode neconvenţionale de sorbţie a unor coloranţi by Viorica DULMAN, Simona Maria CUCU-MAN, Rodica MUREŞAN () [Corola-publishinghouse/Science/100974_a_102266]
-
ale chitosanului. Colorantul este însă adsorbit de chitosan în procent de 96-98% și pentru pH-ul inițial de 6-11. Acest comportament poate fi explicat și prin accesibilitatea grupelor hidroxil din chitosan. În condiții alcaline are loc deprotonarea grupelor hidroxil. Grupele hidroxil ale polimerului chitosan pot adsorbi colorantul prin legare covalentă, similar mecanismului de adsorbție a coloranților reactivi pe polimerii celulozici în procesul de vopsire. În procesele de vopsire se știe că gruparea -Cl a coloranților reactivi poate reacționa cu moleculele materialului
Metode neconvenţionale de sorbţie a unor coloranţi by Viorica DULMAN, Simona Maria CUCU-MAN, Rodica MUREŞAN () [Corola-publishinghouse/Science/100974_a_102266]
-
pot adsorbi colorantul prin legare covalentă, similar mecanismului de adsorbție a coloranților reactivi pe polimerii celulozici în procesul de vopsire. În procesele de vopsire se știe că gruparea -Cl a coloranților reactivi poate reacționa cu moleculele materialului textil la grupele hidroxil ale celulozei (Cel-OH) prin ionizare, după ce pH-ul este ajustat cu Na2CO3. Cel-OH se deprotonează în condiții alcaline și se transformă în ionul celulozic (Cel-O-). Acesta din urmă formează o legătură covalentă cu colorantul reactiv, după care grupările -Cl ale
Metode neconvenţionale de sorbţie a unor coloranţi by Viorica DULMAN, Simona Maria CUCU-MAN, Rodica MUREŞAN () [Corola-publishinghouse/Science/100974_a_102266]
-
acest proces de vopsire, s-a adăugat Na2SO4 în prima etapă a vopsirii pentru a preveni hidroliza colorantului și a crește adsorbția fizică a acestuia pe fibră. Apele reziduale sintetice au conținut colorant reactiv, Na2SO4 și Na2CO3. Ca urmare, grupele hidroxil ale chitosanului ar putea fi legate de colorantul reactiv prin legături covalente la pH alcalin, la fel ca în cazul procesului de vopsire. În cazul altor coloranți (Uzun, 2006) s-a constatat că datorită ariei suprafeței specifice BET foarte mici
Metode neconvenţionale de sorbţie a unor coloranţi by Viorica DULMAN, Simona Maria CUCU-MAN, Rodica MUREŞAN () [Corola-publishinghouse/Science/100974_a_102266]
-
cu aceștia. Prin hidroliză se rup legăturile Si-O și Al-OH de la suprafața cristalelor de argilă. Atomii de siliciu de la suprafață tind să își mențină coordinarea tetraedrică cu oxigenul și își completează coordinarea la temperatura camerei prin atașarea grupelor monovalente hidroxil, cu formarea grupelor silanol. Teoretic, este posibil ca un atom de siliciu să aibă două sau trei grupe hidroxil, conducând la grupe silandiol, respectiv silantriol. Este puțin probabil ca grupele silantriol să existe la suprafața silicei (Alkan și al., 2005
Metode neconvenţionale de sorbţie a unor coloranţi by Viorica DULMAN, Simona Maria CUCU-MAN, Rodica MUREŞAN () [Corola-publishinghouse/Science/100974_a_102266]
-
de la suprafață tind să își mențină coordinarea tetraedrică cu oxigenul și își completează coordinarea la temperatura camerei prin atașarea grupelor monovalente hidroxil, cu formarea grupelor silanol. Teoretic, este posibil ca un atom de siliciu să aibă două sau trei grupe hidroxil, conducând la grupe silandiol, respectiv silantriol. Este puțin probabil ca grupele silantriol să existe la suprafața silicei (Alkan și al., 2005; Doğan și al., 1997). Valoarea pHpzc pentru caolinit este 2,35 (Alkan și al., 2005), iar suprafața este pozitivă
Metode neconvenţionale de sorbţie a unor coloranţi by Viorica DULMAN, Simona Maria CUCU-MAN, Rodica MUREŞAN () [Corola-publishinghouse/Science/100974_a_102266]
-
apoi uscată la 60șC timp de 24 ore și păstrată în exicator ca biosorbent pentru testările ulterioare. Acidul citric se deshidratează conducând la o anhidridă reactivă după încălzire. Introducând biomasa în amestecul de reacție, anhidrida formată poate reacționa cu grupele hidroxil de pe suprafața produsului natural (RB-OH) formând un aduct biomasă-citrat, conform reacției (Mao și al., 2009b): Creșterea temperaturii de la 25 la 130șC conduce la o creștere a cantității de colorant Basic Blue 3 reținute, deoarece crește gradul de reticulare a biomasei
Metode neconvenţionale de sorbţie a unor coloranţi by Viorica DULMAN, Simona Maria CUCU-MAN, Rodica MUREŞAN () [Corola-publishinghouse/Science/100974_a_102266]
-
de intensitate medie de la 1411 cm-1 poate fi atribuit vibrației de întindere simetrice a anionului carboxilat. După introducerea acidului citric pe suprafața biomasei (Figura 4.24b), suprapunerea extinsă produsă în domeniul de la 3325 la 3309 cm-1 poate fi atribuită grupelor hidroxil de pe suprafața biomasei naturale implicate în reacția de esterificare cu acidul citric. Picul evidențiat de la 1411 cm-1, asociat cu vibrația de întindere a C=O, se schimbă marcant la 1404 cm-1. De asemenea, se observă un nou pic la 1729
Metode neconvenţionale de sorbţie a unor coloranţi by Viorica DULMAN, Simona Maria CUCU-MAN, Rodica MUREŞAN () [Corola-publishinghouse/Science/100974_a_102266]
-
biomasei naturale constau în situsuri de: carboxil (B-COO-), fosfat (B-HPO4-) și amino (B-NH3+) Banda largă și intensă din domeniul de la 3200 la 3600 cm-1 poate fi datorată suprapunerii legăturii N-H a grupelor amino și legăturii O-H a grupelor hidroxil. Picurile de la 1658, 1536 și 1235 cm-1 sunt atribuite vibrațiilor de deformare ale legăturilor N-H, vibrațiilor de întindere a legăturilor H-N-C și respectiv întinderii legăturilor C-N. Picurile de absorbție caracteristice grupelor fosfat sunt situate în jurul 1157 cm-1 (vibrație
Metode neconvenţionale de sorbţie a unor coloranţi by Viorica DULMAN, Simona Maria CUCU-MAN, Rodica MUREŞAN () [Corola-publishinghouse/Science/100974_a_102266]
-
imobilizate conținând S. quadricauda activă și inactivată prin temperatură ridicată. Structura perlelor a fost examinată prin microscopie de scanare electronică (Figura 4.33). Peretele celular al matricei de algă verde conține o varietate de grupe funcționale, de exemplu amino, carboxil, hidroxil, fosfat și alte grupe încărcate, create datorită componenților lor cu structură complexă heteropolizaharidici și lipidici, care facilitează legarea colorantului pe pereții celulei de algă. Aceste grupe funcționale și proprietățile de suprafață ale biomasei de algă pot fi observate comparând spectrele
Metode neconvenţionale de sorbţie a unor coloranţi by Viorica DULMAN, Simona Maria CUCU-MAN, Rodica MUREŞAN () [Corola-publishinghouse/Science/100974_a_102266]
-
extracelulară, grupele funcționale chimice ale peretelui celular joacă rolul esențial în biosorbție. Datorită naturii componenților celulari, pe suprafața peretelui celular al microorganismelor pot fi prezente mai multe tipuri de grupe funcționale, dintre care frecvent sunt întâlnite grupele carboxil, fosfat, amino, hidroxil și sulfhidril (Beveridge și Murray, 1976; Doyle și al., 1980; van der Wal și al., 1997). Prezența sau absența, precum și raportul în care se găsesc aceste grupe, depinde de natura microorganismului utilizat ca biosorbent. Global, pereții posedă o încărcare negativă
Metode neconvenţionale de sorbţie a unor coloranţi by Viorica DULMAN, Simona Maria CUCU-MAN, Rodica MUREŞAN () [Corola-publishinghouse/Science/100974_a_102266]
-
intensă din domeniul 3200-3600 cm−1 poate fi datorată suprapunerii vibrațiilor de întindere OH și NH, care este însemnată la picurile de la 1115 și 1161 cm−1, caracteristice vibrațiilor de întindere C-O alcoolic și C-N indicând prezența grupelor hidroxil și de amină pe suprafața biomasei. Picul de la 1161 cm−1 corespunzător biomasei, după sorbția RO16, se intensifică față de cel al biomasei inițiale, în timp ce picul de la 1115 cm−1 descrește considerabil. Picul de la 1385 cm−1 poate fi atribuit vibrațiilor
Metode neconvenţionale de sorbţie a unor coloranţi by Viorica DULMAN, Simona Maria CUCU-MAN, Rodica MUREŞAN () [Corola-publishinghouse/Science/100974_a_102266]
-
observă (Figura 4.46) pentru ambele preparate fungice picuri intense la frecvențele 3500-3200 și 1540 cm-1 reprezentând vibrațiile de întindere ale grupelor amino. Benzile vibrațiilor de întindere ale grupărilor amino ale preparatelor fungice s-au suprapus parțial peste banda grupei hidroxil de la 3500-3300 cm-1. Picurile intense din apropierea frecvențelor 1650, 1400 și 1240 cm-1 sunt cauzate de banda de întindere C=O a grupelor carbonil. Pentru grupele fosfat apar anumite picuri de adsorbție caracteristice, în jur de 1150 și 1078 cm-1, reprezentând
Metode neconvenţionale de sorbţie a unor coloranţi by Viorica DULMAN, Simona Maria CUCU-MAN, Rodica MUREŞAN () [Corola-publishinghouse/Science/100974_a_102266]