3,093 matches
-
a nivelelor de structură fină ale atomului de hidrogen. Aceste rezultate teoretice, în acord cu rezultatele experimentale, califică QED ca prototip de teorie cuantică de câmp și componentă a modelului standard al interacțiilor fundamentale. Teoria cuantică, în stadiul de mecanică cuantică în care se afla în anul 1927, explica structura sistemelor atomice din două puncte de vedere aparent contradictorii, care ilustrau ideea de dualism undă-particulă. Punctul de vedere „ondulatoriu” (Schrödinger) și punctul de vedere „corpuscular” (Heisenberg), în interpretarea statistică dată de
Electrodinamică cuantică () [Corola-website/Science/318918_a_320247]
-
dualism undă-particulă. Punctul de vedere „ondulatoriu” (Schrödinger) și punctul de vedere „corpuscular” (Heisenberg), în interpretarea statistică dată de Born, conduceau la aceleași rezultate, iar Dirac avea să arate în 1930 că ele erau aspecte complementare ale unei teorii unice. Mecanica cuantică nu includea însă interacția sistemelor atomice cu câmpul electromagnetic: emisia și absorbția de radiație erau explicate ca tranziții între stări staționare, dar nu exista un mod de a calcula probabilitățile acestor tranziții. Exista doar o teorie semiclasică a radiației, elaborată
Electrodinamică cuantică () [Corola-website/Science/318918_a_320247]
-
însă interacția sistemelor atomice cu câmpul electromagnetic: emisia și absorbția de radiație erau explicate ca tranziții între stări staționare, dar nu exista un mod de a calcula probabilitățile acestor tranziții. Exista doar o teorie semiclasică a radiației, elaborată în cadrul teoriei cuantice vechi de Einstein în 1916, care definea niște coeficienți de emisie spontană, emisie stimulată și absorbție, fără o bază teoretică de calcul. Teoria cuantică a radiației, numită electrodinamică cuantică, a fost elaborată, într-o primă versiune, de Dirac, în 1927
Electrodinamică cuantică () [Corola-website/Science/318918_a_320247]
-
de a calcula probabilitățile acestor tranziții. Exista doar o teorie semiclasică a radiației, elaborată în cadrul teoriei cuantice vechi de Einstein în 1916, care definea niște coeficienți de emisie spontană, emisie stimulată și absorbție, fără o bază teoretică de calcul. Teoria cuantică a radiației, numită electrodinamică cuantică, a fost elaborată, într-o primă versiune, de Dirac, în 1927. Punctul de vedere era unul corpuscular: radiația electromagnetică era tratată ca un gaz de bosoni de masă zero (fotoni) ale cărui stări erau descrise
Electrodinamică cuantică () [Corola-website/Science/318918_a_320247]
-
tranziții. Exista doar o teorie semiclasică a radiației, elaborată în cadrul teoriei cuantice vechi de Einstein în 1916, care definea niște coeficienți de emisie spontană, emisie stimulată și absorbție, fără o bază teoretică de calcul. Teoria cuantică a radiației, numită electrodinamică cuantică, a fost elaborată, într-o primă versiune, de Dirac, în 1927. Punctul de vedere era unul corpuscular: radiația electromagnetică era tratată ca un gaz de bosoni de masă zero (fotoni) ale cărui stări erau descrise în reprezentarea numerelor de ocupare
Electrodinamică cuantică () [Corola-website/Science/318918_a_320247]
-
radiație fiind descrise de operatori de creare și anihilare. Punctul de vedere ondulatoriu a fost introdus în același an de Jordan, care a indicat că operatorii de creare și anihilare trebuie utilizați și pentru electroni (fermioni), descriși printr-un câmp cuantic. Fermi a publicat în 1930 o versiune concisă de electrodinamică cuantică, în care electronii atomici erau descriși de ecuația relativistă a lui Dirac. La începutul deceniului 1930, electrodinamica fusese așadar reformulată conform cu principiile teoriei relativității (electronii descriși de ecuația lui
Electrodinamică cuantică () [Corola-website/Science/318918_a_320247]
-
vedere ondulatoriu a fost introdus în același an de Jordan, care a indicat că operatorii de creare și anihilare trebuie utilizați și pentru electroni (fermioni), descriși printr-un câmp cuantic. Fermi a publicat în 1930 o versiune concisă de electrodinamică cuantică, în care electronii atomici erau descriși de ecuația relativistă a lui Dirac. La începutul deceniului 1930, electrodinamica fusese așadar reformulată conform cu principiile teoriei relativității (electronii descriși de ecuația lui Dirac în modelul numit teoria găurilor, câmpul electromagnetic descris de ecuațiile
Electrodinamică cuantică () [Corola-website/Science/318918_a_320247]
-
descriși de ecuația relativistă a lui Dirac. La începutul deceniului 1930, electrodinamica fusese așadar reformulată conform cu principiile teoriei relativității (electronii descriși de ecuația lui Dirac în modelul numit teoria găurilor, câmpul electromagnetic descris de ecuațiile lui Maxwell) și ale teoriei cuantice (câmpurile cuantificate canonic, stările descrise în reprezentarea numerelor de ocupare). Calculele teoretice efectuate pe această bază în prima aproximație a teoriei perturbațiilor (efectul Compton, crearea de perechi, radiația de frânare) duceau la rezultate în acord cu determinările experimentale, până la energii
Electrodinamică cuantică () [Corola-website/Science/318918_a_320247]
-
Ideile elaborate pentru eliminarea acestor divergențe prin „renormarea” sarcinii și masei electronului nu constituiau însă o teorie coerentă. Cercetarea fundamentală în fizică, întreruptă în timpul războiului, când cercetătorii își concentaseră eforturile asupra aplicațiilor militare, a fost reluată în 1946. Problemele fizicii cuantice au fost discutate în trei conferințe organizate sub auspiciile Academiei Naționale de Științe (National Academy of Sciences) a SUA, la Shelter Island (1947), Pocono (1948) și Oldstone (1949). Între timp deveniseră cunoscute lucrările lui Tomonaga, efectuate în timpul războiului și publicate
Electrodinamică cuantică () [Corola-website/Science/318918_a_320247]
-
independent al energiei proprii a electronului de către Feynman. A fost publicat un rezumat al cercetărilor grupului din Tokio condus de Tomonaga. La Oldstone au fost discutate rezultatele recente ale lui Feynman și Dyson, care completau o imagine unificată a electrodinamicii cuantice. Schwinger a dat o formulare completă a electrodinamicii cuantice, explicit relativist covariantă și invariantă la transformări de etalonare, cu un formalism matematic avantajos în special în calculul stărilor legate. Feynman și-a prezentat inițial propria versiune a electrodinamicii cuantice ca
Electrodinamică cuantică () [Corola-website/Science/318918_a_320247]
-
fost publicat un rezumat al cercetărilor grupului din Tokio condus de Tomonaga. La Oldstone au fost discutate rezultatele recente ale lui Feynman și Dyson, care completau o imagine unificată a electrodinamicii cuantice. Schwinger a dat o formulare completă a electrodinamicii cuantice, explicit relativist covariantă și invariantă la transformări de etalonare, cu un formalism matematic avantajos în special în calculul stărilor legate. Feynman și-a prezentat inițial propria versiune a electrodinamicii cuantice ca propagare a electronilor în spațiu-timp, dezvoltând o descriere a
Electrodinamică cuantică () [Corola-website/Science/318918_a_320247]
-
electrodinamicii cuantice. Schwinger a dat o formulare completă a electrodinamicii cuantice, explicit relativist covariantă și invariantă la transformări de etalonare, cu un formalism matematic avantajos în special în calculul stărilor legate. Feynman și-a prezentat inițial propria versiune a electrodinamicii cuantice ca propagare a electronilor în spațiu-timp, dezvoltând o descriere a pozitronului propusă de Stueckelberg, apoi a reformulat-o matematic în limbajul unei teorii lagrangiene de câmp. Utilitatea practică a formulării Feynman constă într-un ansamblu de reguli explicite pentru calculul
Electrodinamică cuantică () [Corola-website/Science/318918_a_320247]
-
reguli a primit numele de diagrame Feynman. Dyson a demonstrat echivalența formulărilor Tomonaga-Schwinger-Feynman și faptul că divergențele care apar în matricea S pot fi eliminate prin renormarea masei și sarcinii electronului. Interacția dintre "materie" (alcătuită, în sensul restrâns al electrodinamicii cuantice, din electroni și pozitroni) și "radiație" (alcătuită din fotoni) poate avea loc în orice punct din continuumul spațiu-timp. Dinamica acestui proces este descrisă matematic în contexul teoriei câmpurilor printr-un „câmp de materie” formula 1 și un „câmp de radiație” formula 2
Electrodinamică cuantică () [Corola-website/Science/318918_a_320247]
-
în spațiul Minkowski. Un câmp este un sistem dinamic cu un număr infinit de grade de libertate, distribuite continuu, iar ecuațiile satisfăcute de aceste câmpuri pot fi obținute, pe baza principiului acțiunii minime, dintr-un lagrangian. Trecerea la o teorie cuantică se face prin procedeul numit cuantificarea a doua: câmpurile sunt reinterpretate ca operatori în spațiul stărilor sistemului. Câmpurilor le sunt impuse relații de comutare (pentru radiație) sau anticomutare (pentru materie), compatibile cu o descompunere în operatori de creare și anihilare
Electrodinamică cuantică () [Corola-website/Science/318918_a_320247]
-
cuantificarea a doua: câmpurile sunt reinterpretate ca operatori în spațiul stărilor sistemului. Câmpurilor le sunt impuse relații de comutare (pentru radiație) sau anticomutare (pentru materie), compatibile cu o descompunere în operatori de creare și anihilare în spațiul Fock. În electrodinamica cuantică se utilizează sistemul de unități naturale în care viteza luminii în vid și constanta Planck redusă au valoarea 1. În calculele teoretice este convenabilă descrierea câmpului electromagnetic cu ajutorul potențialelor electromagnetice. Potențialul scalar și potențialul vector sunt reunite într-un cvadrivector
Electrodinamică cuantică () [Corola-website/Science/318918_a_320247]
-
interacție, de la o stare inițială formula 65 în trecutul îndepărtat la oricare dintre stările finale posibile formula 66 în viitorul îndepărtat. Admițând că ansamblul stărilor finale constituie un sistem complet, rezultatul interacției poate fi dezvoltat sub forma conform interpretării statistice a teoriei cuantice, expresia formula 68 reprezintă probabilitatea tranziției formula 69 Matricea cu elemente a primit numele de "matrice S" (din engleză: scattering matrix, în română: matrice de împrăștiere). Ea a fost introdusă de Wheeler în studiul reacțiilor nucleare; ulterior, Heisenberg a subliniat rolul central
Electrodinamică cuantică () [Corola-website/Science/318918_a_320247]
-
conectând liniile electronice printr-o linie fotonică internă. O corecție de vertex nu poate apărea ca diagramă separată, ea fiind interzisă de conservarea impulsului, dar se poate substitui oricărui vertex dintr-o diagramă mai mare. Testul experimental decisiv al electrodinamicii cuantice a fost măsurarea diferenței de energie între nivelele 2s și 2p ale atomului de hidrogen (deplasarea Lamb), pe care mecanica cuantică relativistă le indica degenerate. Rezultatul arată că electronul posedă un "moment magnetic anomal", astfel că factorul Landé ("g-factor") este
Electrodinamică cuantică () [Corola-website/Science/318918_a_320247]
-
de conservarea impulsului, dar se poate substitui oricărui vertex dintr-o diagramă mai mare. Testul experimental decisiv al electrodinamicii cuantice a fost măsurarea diferenței de energie între nivelele 2s și 2p ale atomului de hidrogen (deplasarea Lamb), pe care mecanica cuantică relativistă le indica degenerate. Rezultatul arată că electronul posedă un "moment magnetic anomal", astfel că factorul Landé ("g-factor") este mai mare decât valoarea „normală” formula 121 și în bun acord cu valoarea calculată de Schwinger și Feynman în prima aproximație nenulă
Electrodinamică cuantică () [Corola-website/Science/318918_a_320247]
-
totuși, valoarea mică a constantei de cuplaj materie-radiație permite calcule numerice foarte precise pe baza unei serii numerice doar asimptotic convergentă. Feynman a comentat că „nu există nicio diferență semnificativă între experiment și teorie” și a tras concluzia că electrodinamica cuantică este „piatra nestemată a fizicii” ("the jewel of physics"). Tehnica diagramatică introdusă de Feynman este atât de eficientă încât i-a permis să obțină în puține ore rezultate care, prin metode convenționale, le-au luat altora mai multe luni. Schwinger
Electrodinamică cuantică () [Corola-website/Science/318918_a_320247]
-
utilizate ca instrument de calcul în multe ramuri ale fizicii, de la fizica nucleară și fizica particulelor elementare la fizica solidului. Existența divergențelor în soluția iterativă (și poate chiar în general, cum a sugerat Källén) este un aspect „patologic” al electrodinamicii cuantice, legat de caracterul interacției materie-radiație la energii mari (sau, echivalent, la distanțe mici) și pe care teoria actuală nu îl poate reda. Renormarea este un procedeu ingenios și eficient de a extrage din expresii divergente informații despre mărimi fizice reale
Electrodinamică cuantică () [Corola-website/Science/318918_a_320247]
-
este un procedeu ingenios și eficient de a extrage din expresii divergente informații despre mărimi fizice reale, care pot fi comparate cu rezultatele experimentale. Totuși, în spusele lui Feynman: „e ceea ce aș numi un proces sucit!” ("a dippy process") Electrodinamica cuantică este teoria interacțiilor electromagnetice și totodată un prototip pentru teorii de câmp care încearcă să explice alte interacții fundamentale, cum e cromodinamica cuantică. Dar constanta de cuplaj adimensională pentru forțele nucleare are o valoare cuprinsă între 7 și 57, și
Electrodinamică cuantică () [Corola-website/Science/318918_a_320247]
-
experimentale. Totuși, în spusele lui Feynman: „e ceea ce aș numi un proces sucit!” ("a dippy process") Electrodinamica cuantică este teoria interacțiilor electromagnetice și totodată un prototip pentru teorii de câmp care încearcă să explice alte interacții fundamentale, cum e cromodinamica cuantică. Dar constanta de cuplaj adimensională pentru forțele nucleare are o valoare cuprinsă între 7 și 57, și nu 1/137, iar teoria perturbațiilor nu e aplicabilă: diagramele Feynman pot fi utilizate pentru a ilustra calitativ câmpurile implicate, nu ca instrumente
Electrodinamică cuantică () [Corola-website/Science/318918_a_320247]
-
, sau funcția delta, notată δ(x), nu este o funcție obișnuită, ci o "funcție generalizată" (sau o "distribuție"). Poartă numele fizicianului englez P.A.M. Dirac care a utilizat-o extensiv în formularea sa a mecanicii cuantice, dar prezența ei în matematică este mai veche și e de exemplu implicită în folosirea integralei Stieltjes. Introducerea ei simplifică considerabil prezentările diferitelor capitole ale fizicii matematice. Descrierea matematică riguroasă a statutului funcției lui Dirac (și a altor funcții generalizate
Funcția lui Dirac () [Corola-website/Science/315680_a_317009]
-
din Iași, cu specializări în: FT-RMN, microspectroscopie FT-NIR cu aplicații în biofizica medicală-medicină nucleară în diagnoza + tratamentul cancerului și patologiei Alzheimer, metode de difracție cu raze X și neutroni aplicate la para-cristale/sisteme necristaline, fizica plasmei și teorii de grupuri-grupoizi cuantici pluri-dimensionali, calculatoare și mașini cuantice, biologie matematică relaționala a organismelor vii și sisteme genomice integrate, biologie moleculară cuantică. Petre Frangopol, Prof. Univ. Dr., Universitatea "Alexandru Ioan Cuza" din Iași, specializat în biofizica medicală și medicină nucleară, în special aplicații ale
Listă de biofizicieni români () [Corola-website/Science/315346_a_316675]
-
FT-RMN, microspectroscopie FT-NIR cu aplicații în biofizica medicală-medicină nucleară în diagnoza + tratamentul cancerului și patologiei Alzheimer, metode de difracție cu raze X și neutroni aplicate la para-cristale/sisteme necristaline, fizica plasmei și teorii de grupuri-grupoizi cuantici pluri-dimensionali, calculatoare și mașini cuantice, biologie matematică relaționala a organismelor vii și sisteme genomice integrate, biologie moleculară cuantică. Petre Frangopol, Prof. Univ. Dr., Universitatea "Alexandru Ioan Cuza" din Iași, specializat în biofizica medicală și medicină nucleară, în special aplicații ale rezonantei electronice de spin RES
Listă de biofizicieni români () [Corola-website/Science/315346_a_316675]