1,190 matches
-
tranzistorilor în 1947. Deși unele elemente pure și multi compuși au proprietăți semiconductoare, siliciul, germaniul și compuși ai galiului sunt cele mai folosite în dispozitivele electrice. Elementele aproape de “scară metalelor” în sistemul periodic al elementelor sunt de obicei folosite în semiconductori. Denumirea din partea sudică din nordul Californiei este numită “Sillicon Valley” (Valea Siliciului) din cauza influentelor companiilor tehnologice care au sediul prinipal acolo. O parte integrală din dispozitivele tehnologice de astăzi este făcută din semiconductori, în principal din siliciu. Unele dintre cele
Semiconductor () [Corola-website/Science/317120_a_318449]
-
al elementelor sunt de obicei folosite în semiconductori. Denumirea din partea sudică din nordul Californiei este numită “Sillicon Valley” (Valea Siliciului) din cauza influentelor companiilor tehnologice care au sediul prinipal acolo. O parte integrală din dispozitivele tehnologice de astăzi este făcută din semiconductori, în principal din siliciu. Unele dintre cele mai mari firme include Marvell Technology Group, Național Semiconductor și Advanced Micro Devices (AMD). Proprietăți Conductivitate variabilă Semiconductorii în starea naturală sunt conductori slabi deoarece un curent este necesar mișcării electronilor și semiconductorii
Semiconductor () [Corola-website/Science/317120_a_318449]
-
Sillicon Valley” (Valea Siliciului) din cauza influentelor companiilor tehnologice care au sediul prinipal acolo. O parte integrală din dispozitivele tehnologice de astăzi este făcută din semiconductori, în principal din siliciu. Unele dintre cele mai mari firme include Marvell Technology Group, Național Semiconductor și Advanced Micro Devices (AMD). Proprietăți Conductivitate variabilă Semiconductorii în starea naturală sunt conductori slabi deoarece un curent este necesar mișcării electronilor și semiconductorii au octetul satisfăcut. Există diferite moduri prin care semiconductorii se pot comportă că și materialele conductoare
Semiconductor () [Corola-website/Science/317120_a_318449]
-
au sediul prinipal acolo. O parte integrală din dispozitivele tehnologice de astăzi este făcută din semiconductori, în principal din siliciu. Unele dintre cele mai mari firme include Marvell Technology Group, Național Semiconductor și Advanced Micro Devices (AMD). Proprietăți Conductivitate variabilă Semiconductorii în starea naturală sunt conductori slabi deoarece un curent este necesar mișcării electronilor și semiconductorii au octetul satisfăcut. Există diferite moduri prin care semiconductorii se pot comportă că și materialele conductoare (ex. doparea). Aceste modificări au două finalități: crearea semiconductorilor
Semiconductor () [Corola-website/Science/317120_a_318449]
-
semiconductori, în principal din siliciu. Unele dintre cele mai mari firme include Marvell Technology Group, Național Semiconductor și Advanced Micro Devices (AMD). Proprietăți Conductivitate variabilă Semiconductorii în starea naturală sunt conductori slabi deoarece un curent este necesar mișcării electronilor și semiconductorii au octetul satisfăcut. Există diferite moduri prin care semiconductorii se pot comportă că și materialele conductoare (ex. doparea). Aceste modificări au două finalități: crearea semiconductorilor de tip n și p. Acestea se referă la exces sau insuficientă de electroni. Un
Semiconductor () [Corola-website/Science/317120_a_318449]
-
mari firme include Marvell Technology Group, Național Semiconductor și Advanced Micro Devices (AMD). Proprietăți Conductivitate variabilă Semiconductorii în starea naturală sunt conductori slabi deoarece un curent este necesar mișcării electronilor și semiconductorii au octetul satisfăcut. Există diferite moduri prin care semiconductorii se pot comportă că și materialele conductoare (ex. doparea). Aceste modificări au două finalități: crearea semiconductorilor de tip n și p. Acestea se referă la exces sau insuficientă de electroni. Un număr neechilibrat de electroni poate cauza conducerea electronilor prin
Semiconductor () [Corola-website/Science/317120_a_318449]
-
Semiconductorii în starea naturală sunt conductori slabi deoarece un curent este necesar mișcării electronilor și semiconductorii au octetul satisfăcut. Există diferite moduri prin care semiconductorii se pot comportă că și materialele conductoare (ex. doparea). Aceste modificări au două finalități: crearea semiconductorilor de tip n și p. Acestea se referă la exces sau insuficientă de electroni. Un număr neechilibrat de electroni poate cauza conducerea electronilor prin material. Heterojunctia Heterojunctia are loc când două tipuri de dopare a unui semiconductor are loc în
Semiconductor () [Corola-website/Science/317120_a_318449]
-
care face ca electronii din tipul n să intre în contact cu golurile din tipul p. Un produs al acestui proces sunt ioni cu sarcina din care rezultă curent electric. Electronii excitați O diferența în potențialul electric al unui material semiconductor poate distruge echilibrul termic și poate crea o situație de dezechilibru. Această introduce electroni și goluri în sistem, care interacționează printr-un proces numit difuzie ambipolara. Cand un echilibru termic este deranjat într-un semiconductor, numărul de goluri și electroni
Semiconductor () [Corola-website/Science/317120_a_318449]
-
loc că un rezultat al diferenței de temperatură sau fotoni, care pot intra în sistem și să creeze electroni liberi și goluri. Procesul care crează și anihilează electronii și golurile sunt numite generație și recombinație. Emisia de lumină În anumiți semiconductori, electronii excitați se pot relaxa prin emiterea de lumină, în loc de producerea căldurii. Acești semiconductori sunt folosiți în fabricarea LED-urilor (diodelor emițătoare de lumină) și punctelor cuantice fluorescente. Conversia energiei termince Semiconductorii au factori termoelectrici care îi fac
Semiconductor () [Corola-website/Science/317120_a_318449]
-
să creeze electroni liberi și goluri. Procesul care crează și anihilează electronii și golurile sunt numite generație și recombinație. Emisia de lumină În anumiți semiconductori, electronii excitați se pot relaxa prin emiterea de lumină, în loc de producerea căldurii. Acești semiconductori sunt folosiți în fabricarea LED-urilor (diodelor emițătoare de lumină) și punctelor cuantice fluorescente. Conversia energiei termince Semiconductorii au factori termoelectrici care îi fac folositori în generatoarele termo-electrice și de asemenea în răcitoare termo-electrice. Materiale Un număr mare de elemente
Semiconductor () [Corola-website/Science/317120_a_318449]
-
recombinație. Emisia de lumină În anumiți semiconductori, electronii excitați se pot relaxa prin emiterea de lumină, în loc de producerea căldurii. Acești semiconductori sunt folosiți în fabricarea LED-urilor (diodelor emițătoare de lumină) și punctelor cuantice fluorescente. Conversia energiei termince Semiconductorii au factori termoelectrici care îi fac folositori în generatoarele termo-electrice și de asemenea în răcitoare termo-electrice. Materiale Un număr mare de elemente și compuși au proprietăți semiconductoare, incluzând: - Elemente pure din Grupul XIV al tabelului periodic; cele mai importante fiind
Semiconductor () [Corola-website/Science/317120_a_318449]
-
LED-urilor (diodelor emițătoare de lumină) și punctelor cuantice fluorescente. Conversia energiei termince Semiconductorii au factori termoelectrici care îi fac folositori în generatoarele termo-electrice și de asemenea în răcitoare termo-electrice. Materiale Un număr mare de elemente și compuși au proprietăți semiconductoare, incluzând: - Elemente pure din Grupul XIV al tabelului periodic; cele mai importante fiind siliciul și germaniul. Siliconul și Germaniul sunt folosite efectiv, deoarece au 4 electroni de valentă, astfel având proprietatea de a primii și ceda electroni în aceași măsură
Semiconductor () [Corola-website/Science/317120_a_318449]
-
de a primii și ceda electroni în aceași măsură. - Compușii binari, în particular elemente dintre Grupul III și V, Grupurile ÎI și VI, grupurile IV și VI și între elemente diferite din Grupul IV. - Compuși tetravalenți specifici, oxizi și aliaje. Semiconductori organici, făcuți din compuși organici. Cele mai cunoscute materiale semiconductoare sunt cristaline solide, dar și semiconductori lichizi și fără forme sunt de asemenea cunoscuți. Aceștia include siliciul fără formă hidrogenat și amestecuri de arseniu, seleniu și telur într-o varietate
Semiconductor () [Corola-website/Science/317120_a_318449]
-
binari, în particular elemente dintre Grupul III și V, Grupurile ÎI și VI, grupurile IV și VI și între elemente diferite din Grupul IV. - Compuși tetravalenți specifici, oxizi și aliaje. Semiconductori organici, făcuți din compuși organici. Cele mai cunoscute materiale semiconductoare sunt cristaline solide, dar și semiconductori lichizi și fără forme sunt de asemenea cunoscuți. Aceștia include siliciul fără formă hidrogenat și amestecuri de arseniu, seleniu și telur într-o varietate de proporții. Acești compuși împart cu câteva materiale semiconductoare proprietăți
Semiconductor () [Corola-website/Science/317120_a_318449]
-
III și V, Grupurile ÎI și VI, grupurile IV și VI și între elemente diferite din Grupul IV. - Compuși tetravalenți specifici, oxizi și aliaje. Semiconductori organici, făcuți din compuși organici. Cele mai cunoscute materiale semiconductoare sunt cristaline solide, dar și semiconductori lichizi și fără forme sunt de asemenea cunoscuți. Aceștia include siliciul fără formă hidrogenat și amestecuri de arseniu, seleniu și telur într-o varietate de proporții. Acești compuși împart cu câteva materiale semiconductoare proprietăți intermediare ale conductivității și variația rapidă
Semiconductor () [Corola-website/Science/317120_a_318449]
-
materiale semiconductoare sunt cristaline solide, dar și semiconductori lichizi și fără forme sunt de asemenea cunoscuți. Aceștia include siliciul fără formă hidrogenat și amestecuri de arseniu, seleniu și telur într-o varietate de proporții. Acești compuși împart cu câteva materiale semiconductoare proprietăți intermediare ale conductivității și variația rapidă dintre conductivitate și temperatura, dar de asemenea ocazional rezistență negativă. Acestor materiale le lipsesc rigiditatea structurii cristaline convențională a semiconductorilor, precum siliciul. Ele sunt în general folosite în structuri subțiri, care nu au
Semiconductor () [Corola-website/Science/317120_a_318449]
-
și telur într-o varietate de proporții. Acești compuși împart cu câteva materiale semiconductoare proprietăți intermediare ale conductivității și variația rapidă dintre conductivitate și temperatura, dar de asemenea ocazional rezistență negativă. Acestor materiale le lipsesc rigiditatea structurii cristaline convențională a semiconductorilor, precum siliciul. Ele sunt în general folosite în structuri subțiri, care nu au nevoie de materiale cu conductivitate electrică mare, fiind relativ insensibile la impurități și radiații. Fizică și semiconductorii Semiconductorii sunt definiți prin comportamentul lor electro-conductiv unic, undeva între
Semiconductor () [Corola-website/Science/317120_a_318449]
-
negativă. Acestor materiale le lipsesc rigiditatea structurii cristaline convențională a semiconductorilor, precum siliciul. Ele sunt în general folosite în structuri subțiri, care nu au nevoie de materiale cu conductivitate electrică mare, fiind relativ insensibile la impurități și radiații. Fizică și semiconductorii Semiconductorii sunt definiți prin comportamentul lor electro-conductiv unic, undeva între cel al metalelor și al izolatorilor. Această diferență între aceste materiale poate fi înțeleasă prin stadiul cuantic al electronilor, fiecare conținând zero sau un electron (Principiul Pauli). Aceste stări sunt
Semiconductor () [Corola-website/Science/317120_a_318449]
-
Acestor materiale le lipsesc rigiditatea structurii cristaline convențională a semiconductorilor, precum siliciul. Ele sunt în general folosite în structuri subțiri, care nu au nevoie de materiale cu conductivitate electrică mare, fiind relativ insensibile la impurități și radiații. Fizică și semiconductorii Semiconductorii sunt definiți prin comportamentul lor electro-conductiv unic, undeva între cel al metalelor și al izolatorilor. Această diferență între aceste materiale poate fi înțeleasă prin stadiul cuantic al electronilor, fiecare conținând zero sau un electron (Principiul Pauli). Aceste stări sunt asociate
Semiconductor () [Corola-website/Science/317120_a_318449]
-
fie parțial plin. Dacă starea este mereu ocupată cu un electron, atunci trecerea altor electroni este blocată în acea stare. Un semiconductor pur nu este util, deoarece nu este nici bun conductor, nici bun izolator. Dar o calitate importantă a semiconductorilor (și unele izolatoare cunoscute că semi-izolatoare) este acea de a crește conductivitatea și controlul acesteia prin dopare cu impurități și prin aplicarea câmpurilor electrice. Purtători de sarcină Electronii umplu locurile de la bază benzii de conducere care poate fi înțeleasă că
Semiconductor () [Corola-website/Science/317120_a_318449]
-
scăzută, si (spre deosebire de metale) este posibil să ne gândim la electronii dintr-o bandă de conducție a unui semiconductor că la un fel de “gaz ideal”, unde electronii zboară în jur liberi fără a se supune Principiului Pauli. În majoritatea semiconductorilor, benzile de conducție au o relație de dispersie parabolica și astfel electronii răspund forțelor (câmpurilor electrice, magnetice etc.) la fel cum ar face în vid, cu mase efective diferite. M. Petrescu (coord) Tratat de știință și ingineria materialelor metalice vol
Semiconductor () [Corola-website/Science/317120_a_318449]
-
utilizat, au început să evolueze în sensul miniaturizării, al reducerii costurilor de producție și utilizare și al simplificării programării; în paralel cu unitățile de efectuare a calculelor matematice, s-au dezvoltat și noi tehnologii pentru stocarea datelor. Calculatoarele cu circuite semiconductoare din a doua generație au fost urmate de calculatoarele din a treia generație (cu circuite logice integrate) și din a patra generație (cu microprocesor integrat). Ulterior, mai multe calculatoare din centre universitare și de cercetare au fost interconectate într-o
Istoria mașinilor de calcul () [Corola-website/Science/315303_a_316632]
-
a opri sistemul. Prin simpla strategie de a nu opri ENIAC, s-au redus drastic defectările majore. Hard diskurile hot-pluggable, care puteau fi cuplate sau decuplate de la o mașină fără oprirea acesteia, continuă tradiția reparațiilor efectuate în timpul funcționării. Memoriile cu semiconductori operează fără erori, fiind garantate de producători pe viață, deși unele sisteme de operare, cum ar fi Unix oferă posibilitatea rulării de teste de memorie pentru verificarea funcționalității hardware. În secolul al XXI-lea, nevoia de fiabilitate este și mai
Istoria mașinilor de calcul () [Corola-website/Science/315303_a_316632]
-
de bază. Google utilizează software tolerant la defecte pentru a trata elegant defecțiunile hardware, și lucrează la conceptul de ferme de servere decuplabile. În secolul al XXI-lea, au apărut pe piață microprocesoarele multinucleu. Tablourile de celule de memorare din semiconductori sunt des întâlnite. După ce memoriile cu semiconductoare au devenit omniprezente, dezvoltarea de software s-a simplificat și codurile sursă ale programelor au devenit mai ușor de înțeles. Programarea unei memorii cu tamburi impunea programatorului să fie conștient de poziția în
Istoria mașinilor de calcul () [Corola-website/Science/315303_a_316632]
-
adică intensitatea lui variază ca o funcție sinusoidală (în timp). În cazul redresării curentului alternativ se obține un curent continuu de intensitate variabilă, numit și "pulsatoriu" (sau "ondulat"). Redresarea se poate face cu ajutorul tuburilor electronice (diode sau duble diode) sau semiconductorilor (diode semiconductoare, punți semiconductoare redresoare). Transformarea inversă, pentru a obține curent alternativ din curent continuu, se face cu ajutorul unor dispozitive electronice (invertoare) și este utilă, de exemplu, la alimentarea de la elemente galvanice sau acumulatoare a unor consumatori ce au nevoie
Curent electric () [Corola-website/Science/302809_a_304138]