1,052 matches
-
an Hideki Yukawa a propus prima teorie semnificativă a forțelor nucleare tari pentru a explica menținerea împreună a nucleonilor. Cu lucrările lui Fermi și Yukawa s-a completat modelul modern al atomului. Centrul atomului constă dintr-o bilă compactă de neutroni și protoni care sunt menținuți împreună de către forțele nucleare tari. Nucleele instabile pot suferi dezintegrări alfa, în care ele emit nuclee energetice de heliu, sau dezintegrări beta, în care ele emit electroni sau pozitroni. După una dintre aceste dezintegrări, nucleul
Nucleu atomic () [Corola-website/Science/304258_a_305587]
-
Fisiunea este o reacție nucleară care are drept efect ruperea nucleului în 2 (sau mai multe) fragmente de masă aproximativ egală, neutroni rapizi, radiații și energie termică. Elementele care fisionează cu neutroni termici, se numesc "materiale fisile". Ex. U, U, Pn, Pu. Elementele care fisionează cu neutroni rapizi, se numesc "materiale fisionabile" iar, cele care prin captură de neutroni se transformă în
Fisiune nucleară () [Corola-website/Science/304270_a_305599]
-
Fisiunea este o reacție nucleară care are drept efect ruperea nucleului în 2 (sau mai multe) fragmente de masă aproximativ egală, neutroni rapizi, radiații și energie termică. Elementele care fisionează cu neutroni termici, se numesc "materiale fisile". Ex. U, U, Pn, Pu. Elementele care fisionează cu neutroni rapizi, se numesc "materiale fisionabile" iar, cele care prin captură de neutroni se transformă în materiale fisile, sunt considerate "materiale fertile". Ex. Th, U. Ex.
Fisiune nucleară () [Corola-website/Science/304270_a_305599]
-
are drept efect ruperea nucleului în 2 (sau mai multe) fragmente de masă aproximativ egală, neutroni rapizi, radiații și energie termică. Elementele care fisionează cu neutroni termici, se numesc "materiale fisile". Ex. U, U, Pn, Pu. Elementele care fisionează cu neutroni rapizi, se numesc "materiale fisionabile" iar, cele care prin captură de neutroni se transformă în materiale fisile, sunt considerate "materiale fertile". Ex. Th, U. Ex. fisiune U: Neutronii rezultați din fisiuni se încadrează în două grupe: prompți și întârziați. Cei
Fisiune nucleară () [Corola-website/Science/304270_a_305599]
-
masă aproximativ egală, neutroni rapizi, radiații și energie termică. Elementele care fisionează cu neutroni termici, se numesc "materiale fisile". Ex. U, U, Pn, Pu. Elementele care fisionează cu neutroni rapizi, se numesc "materiale fisionabile" iar, cele care prin captură de neutroni se transformă în materiale fisile, sunt considerate "materiale fertile". Ex. Th, U. Ex. fisiune U: Neutronii rezultați din fisiuni se încadrează în două grupe: prompți și întârziați. Cei prompți sunt eliberați odată cu fragmentele de fisiune (FF) (chiar de către FF, după
Fisiune nucleară () [Corola-website/Science/304270_a_305599]
-
numesc "materiale fisile". Ex. U, U, Pn, Pu. Elementele care fisionează cu neutroni rapizi, se numesc "materiale fisionabile" iar, cele care prin captură de neutroni se transformă în materiale fisile, sunt considerate "materiale fertile". Ex. Th, U. Ex. fisiune U: Neutronii rezultați din fisiuni se încadrează în două grupe: prompți și întârziați. Cei prompți sunt eliberați odată cu fragmentele de fisiune (FF) (chiar de către FF, după 10s) și au energii de max. 6 MeV, energia probabila fiind de 0,85 MeV. Simultan
Fisiune nucleară () [Corola-website/Science/304270_a_305599]
-
în două grupe: prompți și întârziați. Cei prompți sunt eliberați odată cu fragmentele de fisiune (FF) (chiar de către FF, după 10s) și au energii de max. 6 MeV, energia probabila fiind de 0,85 MeV. Simultan se emite radiația γ promptă. Neutronii întârziați sunt emiși ca produși de dezexcitare a unor nuclee care apar ca urmare a dezintegrării β a FF. Fisiunea nucleară, cunoscută și sub denumirea de fisiune atomică, este un proces în care nucleul unui atom se rupe în două
Fisiune nucleară () [Corola-website/Science/304270_a_305599]
-
care nucleul unui atom se rupe în două sau mai multe nuclee mai mici, numite produși de fisiune și, în mod uzual, un număr oarecare de particule individuale. Așadar, fisiunea este o formă de transmutație elementară. Particulele individuale pot fi neutroni, fotoni (uzual sub formă de raze gamma) și alte fragmente nucleare cum ar fi particulele beta și particulele alfa. Fisiunea elementelor grele este o reacție exotermică și poate să elibereze cantități substanțiale de energie sub formă de radiații gamma și
Fisiune nucleară () [Corola-website/Science/304270_a_305599]
-
care fisiunea are loc). Fisiunea nucleară este folosită pentru a produce energie în centrale de putere și pentru explozii în armele nucleare. Fisiunea este utilă ca sursă de putere deoarece unele materiale, numite combustibil nuclear, pe de o parte generează neutroni ca „jucători” ai procesului de fisiune și, pe de altă parte, li se inițiază fisiunea la impactul cu (exact acești) neutroni liberi. Combustibilii nucleari pot fi utilizați în reacții nucleare în lanț auto-întreținute, care eliberează energie în cantități controlate într-
Fisiune nucleară () [Corola-website/Science/304270_a_305599]
-
nucleare. Fisiunea este utilă ca sursă de putere deoarece unele materiale, numite combustibil nuclear, pe de o parte generează neutroni ca „jucători” ai procesului de fisiune și, pe de altă parte, li se inițiază fisiunea la impactul cu (exact acești) neutroni liberi. Combustibilii nucleari pot fi utilizați în reacții nucleare în lanț auto-întreținute, care eliberează energie în cantități controlate într-un reactor nuclear sau în cantități necontrolate, foarte rapid, într-o armă nucleară. Cantitatea de energie liberă conținută într-un combustibil
Fisiune nucleară () [Corola-website/Science/304270_a_305599]
-
fisiunii ca sursă de energie, fapt ce dă naștere la intense dezbateri politice asupra problemei puterii nucleare. Fisiunea nucleară diferă de alte forme de dezintegrare radioactivă prin aceea că ea poate fi amorsată și controlată pe calea reacției în lanț: neutroni liberi eliberați de fiecare eveniment de fisiune pot declanșa în continuare alte evenimente care, la rândul lor eliberează mai mulți neutroni și pot determina mai multe fisiuni. Izotopii chimici care pot să susțină o reacție de fisiune în lanț se
Fisiune nucleară () [Corola-website/Science/304270_a_305599]
-
alte forme de dezintegrare radioactivă prin aceea că ea poate fi amorsată și controlată pe calea reacției în lanț: neutroni liberi eliberați de fiecare eveniment de fisiune pot declanșa în continuare alte evenimente care, la rândul lor eliberează mai mulți neutroni și pot determina mai multe fisiuni. Izotopii chimici care pot să susțină o reacție de fisiune în lanț se numesc combustibili nucleari și se spune că sunt fisili. Cel mai comun combustibil nucleare este U (izotopul uraniului cu masa atomică
Fisiune nucleară () [Corola-website/Science/304270_a_305599]
-
combustibililor nucleari suferă fisiuni spontane extrem de rar, dezintegrându-se în principal prin reacții alfa/beta timp de milenii. Într-un reactor nuclear sau o armă nucleară, cele mai multe evenimente de fisiune sunt induse prin bombardament cu alte particule cum ar fi neutronii. Evenimentele tipice de fisiune eliberează câteva sute de MeV de energie pentru fiecare atom fisionat, acesta fiind și motivul pentru care fisiunea nucleară este folosită ca sursă de energie. Prin contrast, cele mai multe reacții chimice de oxidare (cum ar fi arderea
Fisiune nucleară () [Corola-website/Science/304270_a_305599]
-
o reacție de fuziune (opusă fisiunii), procesul ar fi de asemenea exotermic, cu eliberare de energie. Variația energiei specifice de legătură cu numărul atomic este datorată interacțiunii a două forțe fundamentale ce acționează asupra nucleonilor ce formează nucleul: protoni și neutroni. Nucleonii sunt legați printr-o forță nucleară tare, atractivă, care contrabalansează repulsia electrostatică dintre protoni. Totuși forța nucleară tare acționează numai pe distanțe extrem de scurte, întrucât se supun potențialului Yukawa. Din această cauză nucleele mari sunt mai slab legate per
Fisiune nucleară () [Corola-website/Science/304270_a_305599]
-
care un nucleu rezultat are o masă de aproximativ 90 - 100 uam (unități atomice de masă) și celălalt nucleu de aproximativ 130 - 140 uam. Deoarece forțele nucleare tari acționează pe distanțe mici, nucleele mari trebuie să conțină proporțional mai mulți neutroni decât elementele ușoare, care sunt mult mai stabile cu un raport proton/neutron de 1:1. Neutronii suplimentari stabilizează elementele grele deoarece ele adaugă forță de legătură tare fără a se compune cu forța de repulsie proton-proton. Produșii de fisiune
Fisiune nucleară () [Corola-website/Science/304270_a_305599]
-
atomice de masă) și celălalt nucleu de aproximativ 130 - 140 uam. Deoarece forțele nucleare tari acționează pe distanțe mici, nucleele mari trebuie să conțină proporțional mai mulți neutroni decât elementele ușoare, care sunt mult mai stabile cu un raport proton/neutron de 1:1. Neutronii suplimentari stabilizează elementele grele deoarece ele adaugă forță de legătură tare fără a se compune cu forța de repulsie proton-proton. Produșii de fisiune au, în medie, aproximativ același raport de neutroni și protoni ca și nucleul
Fisiune nucleară () [Corola-website/Science/304270_a_305599]
-
celălalt nucleu de aproximativ 130 - 140 uam. Deoarece forțele nucleare tari acționează pe distanțe mici, nucleele mari trebuie să conțină proporțional mai mulți neutroni decât elementele ușoare, care sunt mult mai stabile cu un raport proton/neutron de 1:1. Neutronii suplimentari stabilizează elementele grele deoarece ele adaugă forță de legătură tare fără a se compune cu forța de repulsie proton-proton. Produșii de fisiune au, în medie, aproximativ același raport de neutroni și protoni ca și nucleul „părinte” și de aceea
Fisiune nucleară () [Corola-website/Science/304270_a_305599]
-
stabile cu un raport proton/neutron de 1:1. Neutronii suplimentari stabilizează elementele grele deoarece ele adaugă forță de legătură tare fără a se compune cu forța de repulsie proton-proton. Produșii de fisiune au, în medie, aproximativ același raport de neutroni și protoni ca și nucleul „părinte” și de aceea sunt în mod normal instabile (deoarece au în mod proporțional prea mulți neutroni în comparație cu izotopii stabili de mase similare). Aceasta este cauza fundamentală a problemei deșeurile înalt radioactive din reactoarele nucleare
Fisiune nucleară () [Corola-website/Science/304270_a_305599]
-
a se compune cu forța de repulsie proton-proton. Produșii de fisiune au, în medie, aproximativ același raport de neutroni și protoni ca și nucleul „părinte” și de aceea sunt în mod normal instabile (deoarece au în mod proporțional prea mulți neutroni în comparație cu izotopii stabili de mase similare). Aceasta este cauza fundamentală a problemei deșeurile înalt radioactive din reactoarele nucleare. Produșii de fisiune tind să fie emițători beta, eliberând electroni rapizi în vederea conservării sarcinii electrice în urma transformării neutronilor excedentari în protoni, în interiorul
Fisiune nucleară () [Corola-website/Science/304270_a_305599]
-
mod proporțional prea mulți neutroni în comparație cu izotopii stabili de mase similare). Aceasta este cauza fundamentală a problemei deșeurile înalt radioactive din reactoarele nucleare. Produșii de fisiune tind să fie emițători beta, eliberând electroni rapizi în vederea conservării sarcinii electrice în urma transformării neutronilor excedentari în protoni, în interiorul nucleului produsului de fisiune. Cei mai comuni combustibili nucleari, U și Pu nu sunt periculoși radiologic prin ei înșiși: U are timpul de înjumătățire de aproximativ 700 milioane de ani, evenimentele spontane de dezintegrare fiind extrem de
Fisiune nucleară () [Corola-website/Science/304270_a_305599]
-
neradioactivi. Multe elemente grele, cum ar fi uraniu, toriu și plutoniu, suferă ambele tipuri de fisiuni: fisiunea spontană, ca o formă a dezintegrării radioactive și fisiunea indusă, o formă a reacției nucleare. Izotopii elementari fisionează când sunt loviți de un neutron liber (rapid) se numesc fisionabili; izotopii care fisionează când sunt loviți cu neutroni lenți (neutroni termici) sunt numiți fisili. Câțiva fisili particulari și izotopii ușor de obținut (ca U și Pu) se numesc combustibili nucleari deoarece ei pot să susțină
Fisiune nucleară () [Corola-website/Science/304270_a_305599]
-
tipuri de fisiuni: fisiunea spontană, ca o formă a dezintegrării radioactive și fisiunea indusă, o formă a reacției nucleare. Izotopii elementari fisionează când sunt loviți de un neutron liber (rapid) se numesc fisionabili; izotopii care fisionează când sunt loviți cu neutroni lenți (neutroni termici) sunt numiți fisili. Câțiva fisili particulari și izotopii ușor de obținut (ca U și Pu) se numesc combustibili nucleari deoarece ei pot să susțină o reacție în lanț și pot fi obținuți în cantități destul de mari pentru
Fisiune nucleară () [Corola-website/Science/304270_a_305599]
-
fisiuni: fisiunea spontană, ca o formă a dezintegrării radioactive și fisiunea indusă, o formă a reacției nucleare. Izotopii elementari fisionează când sunt loviți de un neutron liber (rapid) se numesc fisionabili; izotopii care fisionează când sunt loviți cu neutroni lenți (neutroni termici) sunt numiți fisili. Câțiva fisili particulari și izotopii ușor de obținut (ca U și Pu) se numesc combustibili nucleari deoarece ei pot să susțină o reacție în lanț și pot fi obținuți în cantități destul de mari pentru a fi
Fisiune nucleară () [Corola-website/Science/304270_a_305599]
-
deoarece ei pot să susțină o reacție în lanț și pot fi obținuți în cantități destul de mari pentru a fi utilizați. Toți izotopii fisionabili și fisili suferă și un număr mic de fisiuni spontane care eliberează un număr mic de neutroni liberi (rapizi) în interiorul eșantionului de combustibil nuclear. Neutronii emiși rapid din combustibil devin neutroni liberi, cu un timp de înjumătățire de aproape 15 minute înainte să se dezintegreze în protoni și radiații beta. În mod normal, neutronii se ciocnesc cu
Fisiune nucleară () [Corola-website/Science/304270_a_305599]
-
lanț și pot fi obținuți în cantități destul de mari pentru a fi utilizați. Toți izotopii fisionabili și fisili suferă și un număr mic de fisiuni spontane care eliberează un număr mic de neutroni liberi (rapizi) în interiorul eșantionului de combustibil nuclear. Neutronii emiși rapid din combustibil devin neutroni liberi, cu un timp de înjumătățire de aproape 15 minute înainte să se dezintegreze în protoni și radiații beta. În mod normal, neutronii se ciocnesc cu și sunt absorbiți de către alte nuclee din vecinătate
Fisiune nucleară () [Corola-website/Science/304270_a_305599]