8,529 matches
-
în afară de cele trei posibilități de translație are și trei posibilități de rotație, însă cea din jurul axei care unește cei doi atomi nu este percepută drept schimbare de poziție, astfel că se consideră că molecula are formula 33 grade de libertate. Energia moleculelor se repartizează uniform pe aceste grade de libertate: Prin derivare se obțin capacitățile termice: Ținând cont și de relația lui Robert Mayer scrisă pentru întregul sistem formula 36 se obține: Deci în cazul gazului perfect formula 38 și formula 39 "nu depind de
Gaz perfect () [Corola-website/Science/309598_a_310927]
-
conform căruia volumul ocupat de un amestec de gaz este egal cu suma volumelor parțiale ocupate de gazele componente, considerate la presiunea și temperatura amestecului:formula 49. Fie un amestec de "formula 50" gaze perfecte care ocupă volumul formula 51, având fiecare formula 52 molecule de energie cinetică medie formula 53 , aflate la temperatura formula 54. Din calcule, folosind forma microscopică a ecuației de stare termice, rezultă că presiunea totală exercitată de amestecul de gaze perfecte este: formula 55 iar presiunea parțială a componentei "k" este: formula 56 înlocuind
Gaz perfect () [Corola-website/Science/309598_a_310927]
-
expresia presiunii parțiale în relația presiunii totale, se obține: formula 57 adică un amestec de gaze perfecte respectă legea lui Dalton. Similar legii lui Dalton, se consideră un amestec de "formula 50" gaze perfecte care ocupă fiecare un volum formula 59, având formula 60 molecule de energie cinetică medie formula 53 , aflate la aceeași temperatură formula 54 și presiune formula 63. Folosind forma microscopică a ecuației de stare termice, rezultă că volumul total ocupat de amestecul de gaze perfecte este: formula 64 volumul parțial al componentei "k" este: formula 65
Gaz perfect () [Corola-website/Science/309598_a_310927]
-
este un gaz format din particule cu spinii întregi, numite bosoni, aflate în stare de echilibru termodinamic și care se supun legilor statisticii Bose-Einstein din cadrul mecanicii statistice cuantice. Gazul perfect Bose în statistica cuantică, este considerat ca fiind format din molecule punctiforme, energia lui se reduce astfel la forma translațională. Utilizând funcția de distribuție Bose-Einstein formula 72, pentru cazul cuantic translațional, funcția de distribuție se poate scrie sub forma:formula 73. Aplicând aparatul matematic propriu statistici cuantice se deduc energia gazului perfect, ecuația
Gaz perfect () [Corola-website/Science/309598_a_310927]
-
aceeași temperatură și același volum . Aceste proprietăți pot fi observate direct din expresia presiunii și a energiei, ele fiind consecințe ale formei particulare a funcției de distribuție. Pentru nivele de energie ridicate, unitatea poate fi neglijată în comparație cu formula 81 și numărul moleculelor cu energii cuprinse într-un domeniu este identic cu cel din mecanica statistică clasică. Pentru stări de energie mai coborâte, prezența termenului -1 la numitorul funcției de distribuție mărește numărul de molecule din gazul Bose pentru același domeniu energetic față de
Gaz perfect () [Corola-website/Science/309598_a_310927]
-
unitatea poate fi neglijată în comparație cu formula 81 și numărul moleculelor cu energii cuprinse într-un domeniu este identic cu cel din mecanica statistică clasică. Pentru stări de energie mai coborâte, prezența termenului -1 la numitorul funcției de distribuție mărește numărul de molecule din gazul Bose pentru același domeniu energetic față de cazul clasic. Cel mai important efect al statisticii Bose-Einstein în cazul gazului perfect, constă în suprapopularea nivelelor de energii joase. La temperaturi foarte scăzute și presiuni mari are loc o degenerare extremă
Gaz perfect () [Corola-website/Science/309598_a_310927]
-
ul este un om de știință cu pregătire în domeniul chimiei. Chimiștii studiază compoziția materiei și proprietățile sale: densitatea, aciditatea etc. Totodată, aceștia descriu cantitativ rezultatul studiilor lor, despre proprietăți atomice, cu detalii despre moleculele unor compuși și atomi care le compune. Mai măsoară proprietățile substanțelor, reacțiile chimice, și alte proprietăți chimice mai puțin cunoscute de orice om de rând. Chimiștii își folosesc cunoștințele pentru a afla compoziția și proprietățile unor substanțe speciale și puțin
Chimist () [Corola-website/Science/309630_a_310959]
-
închisă cu un obturator, a cărui manipulare implică o cantitate neglijabilă de energie. Discuția ignoră orice dificultăți cuantice. Evident, presiunea gazului în cele două compartimente este aceeași. Demonul se află lângă obturator, de o parte a peretelui și, ori de câte ori o moleculă a gazului se apropie din partea sa de deschidere, o lasă să treacă prin ea. În felul acesta, numărul de molecule aflate în compartimentul în care se află demonul scade cu timpul iar între cele două încăperi apare o diferență de
Demonul lui Maxwell () [Corola-website/Science/309677_a_311006]
-
gazului în cele două compartimente este aceeași. Demonul se află lângă obturator, de o parte a peretelui și, ori de câte ori o moleculă a gazului se apropie din partea sa de deschidere, o lasă să treacă prin ea. În felul acesta, numărul de molecule aflate în compartimentul în care se află demonul scade cu timpul iar între cele două încăperi apare o diferență de presiune. Dacă îngăduim partiției să devină mobilă ca parte a unui piston, ea se va deplasa din cauza diferenței de presiune
Demonul lui Maxwell () [Corola-website/Science/309677_a_311006]
-
doilea al termodinamicii a fost încălcat: căldura de la un singur rezervor a fost transformată în lucru mecanic. Demonul descris aici (al presiunii) este ușor diferit de cel descris în multe cărți, de exemplu Ref.2, cel „al temperaturii”, care separă moleculele rapide de cele încete într-un recipient izolat termic. Recipientul în care se află demonul formează împreună cu rezervorul un sistem izolat. În primul pas al procesului, demonul creează o diferență de presiune între cele două compartimente, micșorând numărul de molecule
Demonul lui Maxwell () [Corola-website/Science/309677_a_311006]
-
moleculele rapide de cele încete într-un recipient izolat termic. Recipientul în care se află demonul formează împreună cu rezervorul un sistem izolat. În primul pas al procesului, demonul creează o diferență de presiune între cele două compartimente, micșorând numărul de molecule de gaz din compartimentul său. Se poate verifica din formula de mai sus că entropia gazului a scăzut fără să aibă loc un schimb de căldură cu rezervorul. În pasul al doilea o anumită cantitate de căldură "Q" este preluată
Demonul lui Maxwell () [Corola-website/Science/309677_a_311006]
-
activitatea unui demon automat care să împiedice scăderea entropiei. Asupra naturii acestui element domnește până azi un dezacord. Pentru a reduce problema demonului la „esența” ei, Szilard a introdus în 1929 (Ref.3) abstracțiunea unui gaz constând într-o singura moleculă (fizica statistică nu pune o limită principială numărului de molecule ale unui gaz, atâta timp cât ele nu interacționează între ele). Gazului unimolecular i se pot atribui toate funcțiile termodinamice ale unui gaz normal; în particular are o energie a cărei medie
Demonul lui Maxwell () [Corola-website/Science/309677_a_311006]
-
naturii acestui element domnește până azi un dezacord. Pentru a reduce problema demonului la „esența” ei, Szilard a introdus în 1929 (Ref.3) abstracțiunea unui gaz constând într-o singura moleculă (fizica statistică nu pune o limită principială numărului de molecule ale unui gaz, atâta timp cât ele nu interacționează între ele). Gazului unimolecular i se pot atribui toate funcțiile termodinamice ale unui gaz normal; în particular are o energie a cărei medie este menținută constantă prin interacțiune cu un rezervor de căldură
Demonul lui Maxwell () [Corola-website/Science/309677_a_311006]
-
cărei medie este menținută constantă prin interacțiune cu un rezervor de căldură, dar are proprietatea specială că poate fi comprimat la jumătate din volumul său fără lucru mecanic: este suficient să introducem în recipientul care îl conține un perete despărțitor: molecula se află sau de o parte sau de cealaltă a pistonului, deci este „comprimată”, fără lucru mecanic, la un volum mai mic: nu știm însă de ce parte. Demonul imaginat de Szilard face întâi o măsurătoare și stabilește de ce parte a
Demonul lui Maxwell () [Corola-website/Science/309677_a_311006]
-
de o parte sau de cealaltă a pistonului, deci este „comprimată”, fără lucru mecanic, la un volum mai mic: nu știm însă de ce parte. Demonul imaginat de Szilard face întâi o măsurătoare și stabilește de ce parte a peretelui se găsește molecula; după ce a căpătat această informație, transformă (cu oricât de puțin consum de energie) peretele într-un piston care, de pe urma diferenței de presiune, poate efectua un lucru mecanic asupra exteriorului. Astfel molecula transformă căldura "Q" primită de la rezervor - care îi menține
Demonul lui Maxwell () [Corola-website/Science/309677_a_311006]
-
măsurătoare și stabilește de ce parte a peretelui se găsește molecula; după ce a căpătat această informație, transformă (cu oricât de puțin consum de energie) peretele într-un piston care, de pe urma diferenței de presiune, poate efectua un lucru mecanic asupra exteriorului. Astfel molecula transformă căldura "Q" primită de la rezervor - care îi menține energia medie constantă - în lucru mecanic. După ce pistonul a ajuns la capăt, un perete despărțitor este din nou introdus și procesul continuă. Privim acum evoluția entropiei în acest proces. Interesează numai
Demonul lui Maxwell () [Corola-website/Science/309677_a_311006]
-
Privim acum evoluția entropiei în acest proces. Interesează numai termenul referitor la volum: chiar după introducerea peretelui despărțitor,formula 4 unde N este numărul lui Avogadro, iar k este constanta lui Boltzmann. După măsurătoare, deoarece știm - o dată cu demonul - unde se află molecula, formula 5. Deci, în momentul în care rezultatul măsurătorii este cunoscut demonului, entropia totală a scăzut cu formula 6. Dacă principiul al doilea al termodinamicii se poate aplica sistemului simplu format din demon și încăperea cu o moleculă (ceea ce nu este necontestat
Demonul lui Maxwell () [Corola-website/Science/309677_a_311006]
-
demonul - unde se află molecula, formula 5. Deci, în momentul în care rezultatul măsurătorii este cunoscut demonului, entropia totală a scăzut cu formula 6. Dacă principiul al doilea al termodinamicii se poate aplica sistemului simplu format din demon și încăperea cu o moleculă (ceea ce nu este necontestat), trebuie să concludem că: În lucrarea sa din 1929, Szilard a optat pentru prima soluție, după care orice act binar de măsurare (stabilirea dacă molecula este în stânga sau în dreapta) reprezintă un proces ireversibil și este legat
Demonul lui Maxwell () [Corola-website/Science/309677_a_311006]
-
poate aplica sistemului simplu format din demon și încăperea cu o moleculă (ceea ce nu este necontestat), trebuie să concludem că: În lucrarea sa din 1929, Szilard a optat pentru prima soluție, după care orice act binar de măsurare (stabilirea dacă molecula este în stânga sau în dreapta) reprezintă un proces ireversibil și este legat de o creștere a entropiei cu cel puțin formula 9, adică de transmiterea către rezervorul de căldură a unei cantități de energie mai mare sau egală cu formula 10. În limbaj
Demonul lui Maxwell () [Corola-website/Science/309677_a_311006]
-
de măsurători în care această limită este respectată și a justificat astfel de ce demonul nu încalcă principiul al doilea când recurge la ele (Ref.4). În analiza sa, Brillouin presupune că demonul își începe acțiunea după ce „vede” unde se află molecula. „A vedea” înseamnă că cel puțin o cuantă de lumină provenind de la o sursă luminoasă aflată în interiorul încăperii este împrăștiată de moleculă și ajunge pe retina demonului. Împreună cu demonul și gazul la temperatura "T" se găsește în interiorul încăperii, în echilibru
Demonul lui Maxwell () [Corola-website/Science/309677_a_311006]
-
ele (Ref.4). În analiza sa, Brillouin presupune că demonul își începe acțiunea după ce „vede” unde se află molecula. „A vedea” înseamnă că cel puțin o cuantă de lumină provenind de la o sursă luminoasă aflată în interiorul încăperii este împrăștiată de moleculă și ajunge pe retina demonului. Împreună cu demonul și gazul la temperatura "T" se găsește în interiorul încăperii, în echilibru cu pereții ei (și cu retina demonului), și radiație electromagnetică, a cărei energie este distribuită după frecvențe corespunzător temperaturii "T", conform formulei
Demonul lui Maxwell () [Corola-website/Science/309677_a_311006]
-
și gazul la temperatura "T" se găsește în interiorul încăperii, în echilibru cu pereții ei (și cu retina demonului), și radiație electromagnetică, a cărei energie este distribuită după frecvențe corespunzător temperaturii "T", conform formulei lui Planck : formula 12. Pentru a „vedea” o moleculă, retina trebuie să fie impresionată de o cuantă cu o energie formula 13 sensibil diferită de valoarea medie dată de această formulă (ca.0,9 "kT"). Aceasta se poate obține de la o sursă de radiație cu o temperatură formula 14 mai înaltă
Demonul lui Maxwell () [Corola-website/Science/309677_a_311006]
-
în altul. Exemplele pe care le oferă sunt legate de aparatul lui Szilard și unele sunt pur mecanice (Ref.12): în principiu, este posibil de detectat diferența de presiune între cele două compartimente ale aparatului (numai într-unul se găsește molecula) cu o cheltuială de energie oricât de mică. Descriem acum evoluția entropiei și balanța energetică în aparatul lui Szilard, (notat cu A) presupunând că memoria demonului constă intr-un al doilea aparat Szilard (notat cu M), și aflat la început
Demonul lui Maxwell () [Corola-website/Science/309677_a_311006]
-
Szilard, (notat cu A) presupunând că memoria demonului constă intr-un al doilea aparat Szilard (notat cu M), și aflat la început în starea fundamentală, să zicem stânga (L = left): aceasta înseamnă că în M se găsește o partiție, iar molecula se află în L. Pentru simplitate, neglijăm în expresia entropiei termenii legați de volum și temperatură, și calculăm entropia prin formula formula 31 unde "n" este numărul de stări posibile pentru sistemul aparat + demon, evaluat de un observator situat în afara lui
Demonul lui Maxwell () [Corola-website/Science/309677_a_311006]
-
de mulți fizicieni, dar există multe critici, de exemplu Ref.8, 9 , la care Bennett răspunde în Ref.10 . La ora actuală, „morala” acestui mod de a privi demonul este: lucrul mecanic pe care îl câștigă demonul prin urmărirea unei molecule este obligat sa îl consume când se pregătește să urmărească molecula următoare! Într-o lucrare recentă foarte lucidă (Ref.14), John D.Norton atrage atenția asupra confuziei prezente într-o serie de lucrări, între entropia "informațională" și cea "termodinamică". De
Demonul lui Maxwell () [Corola-website/Science/309677_a_311006]