8,268 matches
-
Acesta poate reacționa spontan și violent la temperatura camerei cu clorul și fluorul, formând HCl și HF. Hidrogenul este cel mai răspândit element în univers, reprezentând mai mult de 75% în masă și mai mult de 90% după numărul de atomi. Se găsește în cantități mari în compoziția stelelor și a planetelor gigantice gazoase. Norii moleculari de H sunt asociați cu formarea stelelor. Hidrogenul joacă un rol-cheie și în exploziile stelare datorate reacțiilor de fuziune nucleară dintre protoni. În Univers, hidrogenul
Hidrogen () [Corola-website/Science/297141_a_298470]
-
stelelor și a planetelor gigantice gazoase. Norii moleculari de H sunt asociați cu formarea stelelor. Hidrogenul joacă un rol-cheie și în exploziile stelare datorate reacțiilor de fuziune nucleară dintre protoni. În Univers, hidrogenul este întâlnit mai ales sub forma de atom și în stare de plasmă. Proprietățile acestora sunt diferite față de cele ale moleculei de hidrogen. Electronul și protonul de hidrogen nu formează legături în starea de plasmă, din cauza conductivității electrice diferite și a unei emisii radiative mari (originea luminii emise
Hidrogen () [Corola-website/Science/297141_a_298470]
-
mai întâlniți compuși chimici ai săi sunt hidrocarburile și apa. Hidrogenul gazos este produs de anumite specii de bacterii și alge, acesta fiind componentul principal al flatulenței. Metanul este o importantă sursă de hidrogen. Nivelul energetic fundamental al electronului în atomul de hidrogen are energia egală cu -13,6 eV. Nivelele superioare se numesc nivele excitate, energia acestora crescând până la 0 eV (valoarea nivelului energetic aflat la infinit), ele se calculează folosind modelul lui Bohr. Acesta consideră că nucleul este fix
Hidrogen () [Corola-website/Science/297141_a_298470]
-
și protonul unul spre celălalt, în timp ce corpurile cerești se atrag datorită gravitației. Potrivit condiței de cuantificare a momentului cinetic postulat de Bohr, valoarea momentului cinetic al electronului este multiplu întreg al constantei reduse al lui Planck, de unde rezultă că în cadrul atomului, electronului îi sunt permise anumite orbite cu raze bine stabilite. Aceeastă relație de cuantificare explică spectrul discret al nivelelor energetice. O descriere mai exactă a atomului de hidrogen este dată în fizica cuantică unde se calculează densitatea de probabilitate prin
Hidrogen () [Corola-website/Science/297141_a_298470]
-
electronului este multiplu întreg al constantei reduse al lui Planck, de unde rezultă că în cadrul atomului, electronului îi sunt permise anumite orbite cu raze bine stabilite. Aceeastă relație de cuantificare explică spectrul discret al nivelelor energetice. O descriere mai exactă a atomului de hidrogen este dată în fizica cuantică unde se calculează densitatea de probabilitate prin norma funcției de undă a electronului în jurul protonului pe baza ecuației lui Schrödinger sau a formulării lui Feynman cu integrală de drum. Hidrogenul are trei izotopi
Hidrogen () [Corola-website/Science/297141_a_298470]
-
și T (în loc de H și H) sunt folosite pentru deuteriu și tritiu, dar P este utilizat pentru fosfor, deci nu se poate folosi pentru simbolizarea protiului. IUPAC acceptă atât ambele variante, dar H și H sunt preferate. Emisia spectrală a atomului de hidrogen este caracterizată prin linii spectrale date de formula lui Rydbeg. Studiul liniilor spectrale este important în mecanica cuantică și la studiul prezenței hidrogenului pentru determinarea deplasării spre roșu. Există doi izomeri de spin ai moleculei de hidrogen care
Hidrogen () [Corola-website/Science/297141_a_298470]
-
ai unei combinații complexe. Această funcție se întâlnește la elementele din grupa 13, cu precădere la boruri și compușii complecși ai aluminiului. Compușii hidrogenului sunt adesea numiți „hidruri”, acest termen fiind uneori impropriu utilizat. „Hidrură” definește o substanță în care atomul de H are caracter anionic sau sarcină negativă, deci H, fiind utilizat pentru compușii hidrogenului cu un element mai electropozitiv. Existența anionului hidrură, sugerată de Gilbert N. Lewis în 1916 pentru elementele din prima grupă și a doua principală, a
Hidrogen () [Corola-website/Science/297141_a_298470]
-
Numărul de oxidare sau starea de oxidare se definește ca suma sarcinilor pozitive și negative ale unui atom, care indică indirect numărul de electroni pe care atomul i-a acceptat sau cedat. Numărul de oxidare este o aproximare conceptuală, utilă de exemplu când au loc procese de oxidare sau reducere. Protonii unui atom sunt încărcați pozitiv, această sarcină
Număr de oxidare () [Corola-website/Science/297152_a_298481]
-
Numărul de oxidare sau starea de oxidare se definește ca suma sarcinilor pozitive și negative ale unui atom, care indică indirect numărul de electroni pe care atomul i-a acceptat sau cedat. Numărul de oxidare este o aproximare conceptuală, utilă de exemplu când au loc procese de oxidare sau reducere. Protonii unui atom sunt încărcați pozitiv, această sarcină fiind compensată de cea negativă a electronilor; dacă numărul
Număr de oxidare () [Corola-website/Science/297152_a_298481]
-
pozitive și negative ale unui atom, care indică indirect numărul de electroni pe care atomul i-a acceptat sau cedat. Numărul de oxidare este o aproximare conceptuală, utilă de exemplu când au loc procese de oxidare sau reducere. Protonii unui atom sunt încărcați pozitiv, această sarcină fiind compensată de cea negativă a electronilor; dacă numărul de protoni și de electroni este același într-un atom, acesta este electric neutru. Dacă atomul cedează un electron, sarcinile pozitive ale protonilor nu mai sunt
Număr de oxidare () [Corola-website/Science/297152_a_298481]
-
o aproximare conceptuală, utilă de exemplu când au loc procese de oxidare sau reducere. Protonii unui atom sunt încărcați pozitiv, această sarcină fiind compensată de cea negativă a electronilor; dacă numărul de protoni și de electroni este același într-un atom, acesta este electric neutru. Dacă atomul cedează un electron, sarcinile pozitive ale protonilor nu mai sunt compensate, nefiind destui electroni. În acest mod se obține un ion cu sarcină pozitivă (cation), A, despre care spunem că este un ion monopozitiv
Număr de oxidare () [Corola-website/Science/297152_a_298481]
-
când au loc procese de oxidare sau reducere. Protonii unui atom sunt încărcați pozitiv, această sarcină fiind compensată de cea negativă a electronilor; dacă numărul de protoni și de electroni este același într-un atom, acesta este electric neutru. Dacă atomul cedează un electron, sarcinile pozitive ale protonilor nu mai sunt compensate, nefiind destui electroni. În acest mod se obține un ion cu sarcină pozitivă (cation), A, despre care spunem că este un ion monopozitiv; numărul său de oxidare este +1
Număr de oxidare () [Corola-website/Science/297152_a_298481]
-
sarcinile pozitive ale protonilor nu mai sunt compensate, nefiind destui electroni. În acest mod se obține un ion cu sarcină pozitivă (cation), A, despre care spunem că este un ion monopozitiv; numărul său de oxidare este +1. În schimb, dacă atomul acceptă un electron, protonii nu mai compensează sarcina electronilor, obținându-se un ion mononegativ, A. De asemenea, atomul poate ceda un număr mai mare de electroni, rezultând ioni dipozitivi, tripozitivi, etc. În același mod, poate să accepte un număr mai
Număr de oxidare () [Corola-website/Science/297152_a_298481]
-
cu sarcină pozitivă (cation), A, despre care spunem că este un ion monopozitiv; numărul său de oxidare este +1. În schimb, dacă atomul acceptă un electron, protonii nu mai compensează sarcina electronilor, obținându-se un ion mononegativ, A. De asemenea, atomul poate ceda un număr mai mare de electroni, rezultând ioni dipozitivi, tripozitivi, etc. În același mod, poate să accepte un număr mai mare de electroni, obținându-se ioni dinegativi, trinegativi, etc. Numărul de oxidare este înscris de obicei, între paranteze
Număr de oxidare () [Corola-website/Science/297152_a_298481]
-
cu simbolul ρ (litera grecească "ro") și unitatea de măsură ohm metru (Ω·m). Următorii termeni sînt înrudiți cu conductivitatea electrică dar au semnificații diferite: De exemplu, în conductoare, datorită agitației interne, multitudinea de electroni ce se deplasează de la un atom la altul, poate fi asimilată cu un gaz electronic în care interacțiunile dintre electroni sunt neglijabile. Se ține cont că electronii se ciocnesc cu ionii pozitivi metalici după parcurgerea drumului liber mijlociu, cu o viteză calculabilă. Datorită agitației interne naturale
Conductivitate electrică () [Corola-website/Science/297155_a_298484]
-
reactiv și un agent oxidant care formează foarte ușor compuși (în special oxizi) cu majoritatea elementelor. După masă, oxigenul este al treilea cel mai întâlnit element în univers, după hidrogen și heliu. În condiții normale de temperatură și presiune, doi atomi de oxigen se leagă pentru a forma dioxigenul, o moleculă diatomică incoloră, inodoră și insipidă, cu formula . Multe clase majore de molecule organice în organismele vii, cum ar fi proteinele, acizii nucleici, carbohidrații, și grăsimile, conțin aer, la fel ca
Oxigen () [Corola-website/Science/297158_a_298487]
-
greșise în această privință (de fapt hidrogenul este cel care stă la baza formării acizilor), dar era deja prea târziu; denumirea fusese preluată. Ipoteza atomică originală a lui John Dalton afirma faptul că toate elementele chimice erau monoatomice și că atomii din compuși ar fi avut în mod normal cele mai simple rapoarte atomice. De exemplu, Dalton a crezut că formula chimică a apei era HO, prezentând masa atomică a oxigenului ca fiind de opt ori cea a hidrogenului, în contrast cu valoarea
Oxigen () [Corola-website/Science/297158_a_298487]
-
cu succes să facă o mică rachetă să zboare 56 m cu 97 km/h, în Auburn, Massachusetts, SUA. În condiții normale de temperatură și presiune, oxigenul este un gaz incolor, inodor și insipid cu formula moleculară , în cadrul căreia doi atomi de oxigen sunt legați chimic unul de altul printr-o configurație electronică cu triplet de spini. Această legătură este de ordinul doi, și este adesea simplificată în descriere ca o legătură dublă sau ca o combinație dintre o legătură a
Oxigen () [Corola-website/Science/297158_a_298487]
-
oxidare sunt foarte rari: −1/2 (superoxizi), −1/3 (ozonuri), 0 (alotropi ai oxigenului, acid hipofluoros), +1/2 (dioxigenil), +1 ([difluorid de dioxigen), și +2 (difluorid de oxigen). Apa () este oxidul de hidrogen și cel mai familiar compus al oxigenului. Atomii de hidrogen sunt legați covalent de oxigen în cadrul unei molecule de apă, dar au de asemenea și o atracție adițională (aproximativ 23,3 kJ/mol per atom de hidrogen) față de un atom de oxigen adiacent din altă moleculă. Aceste legături
Oxigen () [Corola-website/Science/297158_a_298487]
-
oxigen). Apa () este oxidul de hidrogen și cel mai familiar compus al oxigenului. Atomii de hidrogen sunt legați covalent de oxigen în cadrul unei molecule de apă, dar au de asemenea și o atracție adițională (aproximativ 23,3 kJ/mol per atom de hidrogen) față de un atom de oxigen adiacent din altă moleculă. Aceste legături de hidrogen dintre moleculele de apă le ține cu aproximativ 15% mai aproape decât ar fi fost de așteptat în cazul unui lichid simplu, în cadrul căruia se
Oxigen () [Corola-website/Science/297158_a_298487]
-
hidrogen și cel mai familiar compus al oxigenului. Atomii de hidrogen sunt legați covalent de oxigen în cadrul unei molecule de apă, dar au de asemenea și o atracție adițională (aproximativ 23,3 kJ/mol per atom de hidrogen) față de un atom de oxigen adiacent din altă moleculă. Aceste legături de hidrogen dintre moleculele de apă le ține cu aproximativ 15% mai aproape decât ar fi fost de așteptat în cazul unui lichid simplu, în cadrul căruia se exercită doar forțe van der
Oxigen () [Corola-website/Science/297158_a_298487]
-
-ul, acidul acetic și acidul formic. Acetona () și fenolul () sunt utilizați ca materiale aditive la sinteza diferitelor substanțe. Alți compuși organici importanți care conțin oxigen sunt: glicerol, formaldehidă, glutaraldehidă, acid citric, anhidridă acetică, și acetamidă. Epoxizii sunt eteri în care atomul de oxigen face parte dintr-un nucleu de trei atomi. Oxigenul reacționează spontan cu mulți compuși organici la sau dedesubtul temperaturii ambientale, într-un proces cunoscut sub denumirea de autoxidare. Majoritatea compușilor organici care conțin oxigen nu sunt obținuți prin
Oxigen () [Corola-website/Science/297158_a_298487]
-
utilizați ca materiale aditive la sinteza diferitelor substanțe. Alți compuși organici importanți care conțin oxigen sunt: glicerol, formaldehidă, glutaraldehidă, acid citric, anhidridă acetică, și acetamidă. Epoxizii sunt eteri în care atomul de oxigen face parte dintr-un nucleu de trei atomi. Oxigenul reacționează spontan cu mulți compuși organici la sau dedesubtul temperaturii ambientale, într-un proces cunoscut sub denumirea de autoxidare. Majoritatea compușilor organici care conțin oxigen nu sunt obținuți prin acțiunea directă a . Printre compușii organici importanți în industrie și
Oxigen () [Corola-website/Science/297158_a_298487]
-
atunci energia "W" nu va fi egală cu W până când faza particulei nu devine φ' > φ; aceasta poate avea loc în cazul φ' < π sau φ' > π. La începutul secolului XX, ciclotronii erau denumiți în mod normal ca ”spărgător de atomi”. În ciuda faptului că ciocnirile de particule moderne, de fapt, propulsează particulele subatomice - atomii înșiși acum sunt relativ simplu de scindat fără a utiliza acceleratorul de particule - termenul persistă în limbajul cotidian când ne referim la acceleratorul de particule în general
Accelerator de particule () [Corola-website/Science/298190_a_299519]
-
devine φ' > φ; aceasta poate avea loc în cazul φ' < π sau φ' > π. La începutul secolului XX, ciclotronii erau denumiți în mod normal ca ”spărgător de atomi”. În ciuda faptului că ciocnirile de particule moderne, de fapt, propulsează particulele subatomice - atomii înșiși acum sunt relativ simplu de scindat fără a utiliza acceleratorul de particule - termenul persistă în limbajul cotidian când ne referim la acceleratorul de particule în general. Radiațiile de particule cu energie mare sunt folositoare atât pentru cercetările fundamentale și
Accelerator de particule () [Corola-website/Science/298190_a_299519]