8,846 matches
-
În analiza matematică, un spațiu Banach este un spațiu vectorial normat în care orice șir Cauchy este convergent. Spațiile Banach sunt numite după matematicianul polonez Stefan Banach (1892 - 1945). În teoria spațiilor liniare normate, cele mai importante rezultate se obțin în cazul când este îndeplinită "condiția de completitudine". Un șir formula 1 de elemente dintr-un spațiu liniar normat formula 2 se numește șir Cauchy dacă oricare ar fi formula 3 există un indice formula 4 astfel încât
Spațiu Banach () [Corola-website/Science/309759_a_311088]
-
este convergent. Spațiile Banach sunt numite după matematicianul polonez Stefan Banach (1892 - 1945). În teoria spațiilor liniare normate, cele mai importante rezultate se obțin în cazul când este îndeplinită "condiția de completitudine". Un șir formula 1 de elemente dintr-un spațiu liniar normat formula 2 se numește șir Cauchy dacă oricare ar fi formula 3 există un indice formula 4 astfel încât formula 5 implică formula 6 Într-un spațiu liniar normat, oricare șir convergent este șir Cauchy; reciproc nu este adevărat. "Definiție": Un spațiu liniar normat "X
Spațiu Banach () [Corola-website/Science/309759_a_311088]
-
obțin în cazul când este îndeplinită "condiția de completitudine". Un șir formula 1 de elemente dintr-un spațiu liniar normat formula 2 se numește șir Cauchy dacă oricare ar fi formula 3 există un indice formula 4 astfel încât formula 5 implică formula 6 Într-un spațiu liniar normat, oricare șir convergent este șir Cauchy; reciproc nu este adevărat. "Definiție": Un spațiu liniar normat "X" în care oricare șir Cauchy este convergent se numește "spațiu liniar normat complet" sau "spațiu Banach". "Observație": Proprietatea de completitudine se menține pentru
Spațiu Banach () [Corola-website/Science/309759_a_311088]
-
un spațiu liniar normat formula 2 se numește șir Cauchy dacă oricare ar fi formula 3 există un indice formula 4 astfel încât formula 5 implică formula 6 Într-un spațiu liniar normat, oricare șir convergent este șir Cauchy; reciproc nu este adevărat. "Definiție": Un spațiu liniar normat "X" în care oricare șir Cauchy este convergent se numește "spațiu liniar normat complet" sau "spațiu Banach". "Observație": Proprietatea de completitudine se menține pentru submulțimile închise. "Teoremă". Oricare subspațiu închis al unui spațiu Banach este spațiu Banach. "Demonstrație". Oricare
Spațiu Banach () [Corola-website/Science/309759_a_311088]
-
formula 3 există un indice formula 4 astfel încât formula 5 implică formula 6 Într-un spațiu liniar normat, oricare șir convergent este șir Cauchy; reciproc nu este adevărat. "Definiție": Un spațiu liniar normat "X" în care oricare șir Cauchy este convergent se numește "spațiu liniar normat complet" sau "spațiu Banach". "Observație": Proprietatea de completitudine se menține pentru submulțimile închise. "Teoremă". Oricare subspațiu închis al unui spațiu Banach este spațiu Banach. "Demonstrație". Oricare șir Cauchy de elemente dintr-un spațiu liniar închis al unui spațiu Banach
Spațiu Banach () [Corola-website/Science/309759_a_311088]
-
este convergent se numește "spațiu liniar normat complet" sau "spațiu Banach". "Observație": Proprietatea de completitudine se menține pentru submulțimile închise. "Teoremă". Oricare subspațiu închis al unui spațiu Banach este spațiu Banach. "Demonstrație". Oricare șir Cauchy de elemente dintr-un spațiu liniar închis al unui spațiu Banach este șir convergent către un element din spațiul Banach. Deoarece subspațiul liniar este închis, limita șirului aparține subspațiului. Deci subspațiul liniar închis este complet. "Teoremă". Un spațiu liniar normat formula 7 este spațiu Banach dacă și
Spațiu Banach () [Corola-website/Science/309759_a_311088]
-
pentru submulțimile închise. "Teoremă". Oricare subspațiu închis al unui spațiu Banach este spațiu Banach. "Demonstrație". Oricare șir Cauchy de elemente dintr-un spațiu liniar închis al unui spațiu Banach este șir convergent către un element din spațiul Banach. Deoarece subspațiul liniar este închis, limita șirului aparține subspațiului. Deci subspațiul liniar închis este complet. "Teoremă". Un spațiu liniar normat formula 7 este spațiu Banach dacă și numai dacă oricare serie absolut convergentă este convergentă. "Demonstrație". Fie "X" un spațiu liniar normat complet și
Spațiu Banach () [Corola-website/Science/309759_a_311088]
-
spațiu Banach este spațiu Banach. "Demonstrație". Oricare șir Cauchy de elemente dintr-un spațiu liniar închis al unui spațiu Banach este șir convergent către un element din spațiul Banach. Deoarece subspațiul liniar este închis, limita șirului aparține subspațiului. Deci subspațiul liniar închis este complet. "Teoremă". Un spațiu liniar normat formula 7 este spațiu Banach dacă și numai dacă oricare serie absolut convergentă este convergentă. "Demonstrație". Fie "X" un spațiu liniar normat complet și fie formula 8 o serie absolut convergentă. Dacă formula 9 atunci
Spațiu Banach () [Corola-website/Science/309759_a_311088]
-
șir Cauchy de elemente dintr-un spațiu liniar închis al unui spațiu Banach este șir convergent către un element din spațiul Banach. Deoarece subspațiul liniar este închis, limita șirului aparține subspațiului. Deci subspațiul liniar închis este complet. "Teoremă". Un spațiu liniar normat formula 7 este spațiu Banach dacă și numai dacă oricare serie absolut convergentă este convergentă. "Demonstrație". Fie "X" un spațiu liniar normat complet și fie formula 8 o serie absolut convergentă. Dacă formula 9 atunci formula 10 Deci dacă formula 11 este șir Cauchy
Spațiu Banach () [Corola-website/Science/309759_a_311088]
-
Banach. Deoarece subspațiul liniar este închis, limita șirului aparține subspațiului. Deci subspațiul liniar închis este complet. "Teoremă". Un spațiu liniar normat formula 7 este spațiu Banach dacă și numai dacă oricare serie absolut convergentă este convergentă. "Demonstrație". Fie "X" un spațiu liniar normat complet și fie formula 8 o serie absolut convergentă. Dacă formula 9 atunci formula 10 Deci dacă formula 11 este șir Cauchy, atunci formula 12 este șir Cauchy. Prin urmare, spațiul liniar normat "X" fiind complet, există formula 13 adică seria formula 14 este convergentă. Reciproc
Spațiu Banach () [Corola-website/Science/309759_a_311088]
-
dacă oricare serie absolut convergentă este convergentă. "Demonstrație". Fie "X" un spațiu liniar normat complet și fie formula 8 o serie absolut convergentă. Dacă formula 9 atunci formula 10 Deci dacă formula 11 este șir Cauchy, atunci formula 12 este șir Cauchy. Prin urmare, spațiul liniar normat "X" fiind complet, există formula 13 adică seria formula 14 este convergentă. Reciproc, fie formula 15un șir Cauchy în formula 16 Atunci există un subșir formula 17 astfel încât formula 18 Rezultă că seria formula 19 este convergentă. Conform celor demonstrate în prima parte a teoremei, rezultă
Spațiu Banach () [Corola-website/Science/309759_a_311088]
-
celor demonstrate în prima parte a teoremei, rezultă că seria formula 20 este convergentă. Se notează formula 21 Deoarece: rezultă că subșirul formula 17 al șirului formula 15 este convergent. Prin urmare, șirul formula 15 este convergent. "Teoremă". Dacă formula 26 sunt spații Banach, atunci spațiul liniar normat produs formula 27 este de asemenea un spațiu Banach. "Demonstrație". Trebuie demonstrată doar completitudinea spațiului formula 28 Fie formula 29 un șir Cauchy din spațiul liniar normat produs formula 30 unde formula 31 Pentru fiecare formula 3 există formula 33 astfel încât formula 34 de unde rezultă că formula 35
Spațiu Banach () [Corola-website/Science/309759_a_311088]
-
este convergent. Prin urmare, șirul formula 15 este convergent. "Teoremă". Dacă formula 26 sunt spații Banach, atunci spațiul liniar normat produs formula 27 este de asemenea un spațiu Banach. "Demonstrație". Trebuie demonstrată doar completitudinea spațiului formula 28 Fie formula 29 un șir Cauchy din spațiul liniar normat produs formula 30 unde formula 31 Pentru fiecare formula 3 există formula 33 astfel încât formula 34 de unde rezultă că formula 35 Atunci există formula 36 astfel încât formula 37 Deci formula 38 Se notează formula 39 În concluzie, oricare ar fi formula 40 există formula 33 astfel încât formula 42 adică formula 43 "Teoremă" (echivalența
Spațiu Banach () [Corola-website/Science/309759_a_311088]
-
astfel încât formula 34 de unde rezultă că formula 35 Atunci există formula 36 astfel încât formula 37 Deci formula 38 Se notează formula 39 În concluzie, oricare ar fi formula 40 există formula 33 astfel încât formula 42 adică formula 43 "Teoremă" (echivalența spațiilor Banach). Dacă normele formula 44 și formula 45, definite în spațiul liniar formula 46 sunt echivalente, atunci spațiul liniar normat formula 47 este spațiu Banach dacă și numai dacă spațiul liniar normat formula 48 este spațiu Banach. "Demonstrație". Fie formula 49 două constante alese astfel ca formula 50 Fie, în continuare, formula 51 spațiu Banach și formula 52 un
Spațiu Banach () [Corola-website/Science/309759_a_311088]
-
Atunci există formula 36 astfel încât formula 37 Deci formula 38 Se notează formula 39 În concluzie, oricare ar fi formula 40 există formula 33 astfel încât formula 42 adică formula 43 "Teoremă" (echivalența spațiilor Banach). Dacă normele formula 44 și formula 45, definite în spațiul liniar formula 46 sunt echivalente, atunci spațiul liniar normat formula 47 este spațiu Banach dacă și numai dacă spațiul liniar normat formula 48 este spațiu Banach. "Demonstrație". Fie formula 49 două constante alese astfel ca formula 50 Fie, în continuare, formula 51 spațiu Banach și formula 52 un șir fundamental în formula 53 Pentru numărul
Spațiu Banach () [Corola-website/Science/309759_a_311088]
-
concluzie, oricare ar fi formula 40 există formula 33 astfel încât formula 42 adică formula 43 "Teoremă" (echivalența spațiilor Banach). Dacă normele formula 44 și formula 45, definite în spațiul liniar formula 46 sunt echivalente, atunci spațiul liniar normat formula 47 este spațiu Banach dacă și numai dacă spațiul liniar normat formula 48 este spațiu Banach. "Demonstrație". Fie formula 49 două constante alese astfel ca formula 50 Fie, în continuare, formula 51 spațiu Banach și formula 52 un șir fundamental în formula 53 Pentru numărul formula 54 există formula 55 astfel încât pentru orice formula 56 există relația formula 57 Se
Spațiu Banach () [Corola-website/Science/309759_a_311088]
-
deci șirul formula 52 este convergent în formula 69 În consecință, spațiul formula 70 este spațiu Banach. Schimbând cu rolurile normele formula 71 și formula 72 se obține că dacă formula 70 este spațiu Banach atunci și formula 60 este spațiu Banach. "Definiție". Fie formula 75 un spațiu liniar normat, formula 76 un șir de elemente din formula 77 și formula 78 Dacă există formula 79 atunci seria formula 80 se numește "serie convergentă". Elementul formula 81 este "suma seriei" formula 14 și se notează formula 83 Șirul formula 12 se numește "șirul sumelor parțiale".</br> Dacă șirul
Spațiu Banach () [Corola-website/Science/309759_a_311088]
-
formula 83 Șirul formula 12 se numește "șirul sumelor parțiale".</br> Dacă șirul sumelor parțiale nu este convergent, atunci seria se numește "divergentă".</br> Dacă seria formula 85 este convergentă, atunci seria formula 86 se numește "absolut convergentă". Pentru a determina dacă un spațiu liniar normat este complet, există următorul criteriu: "Teoremă". Un spațiu liniar normat formula 75 este spațiu Banach dacă și numai dacă oricare serie absolut convergentă este convergentă. "Demonstrație". Fie formula 77 un spațiu vectorial normat și fie formula 14 o serie absolut convergentă. Dacă
Spațiu Banach () [Corola-website/Science/309759_a_311088]
-
șirul sumelor parțiale nu este convergent, atunci seria se numește "divergentă".</br> Dacă seria formula 85 este convergentă, atunci seria formula 86 se numește "absolut convergentă". Pentru a determina dacă un spațiu liniar normat este complet, există următorul criteriu: "Teoremă". Un spațiu liniar normat formula 75 este spațiu Banach dacă și numai dacă oricare serie absolut convergentă este convergentă. "Demonstrație". Fie formula 77 un spațiu vectorial normat și fie formula 14 o serie absolut convergentă. Dacă formula 90 atunci formula 10 Deci dacă formula 92 este șir Cauchy, atunci
Spațiu Banach () [Corola-website/Science/309759_a_311088]
-
numai dacă oricare serie absolut convergentă este convergentă. "Demonstrație". Fie formula 77 un spațiu vectorial normat și fie formula 14 o serie absolut convergentă. Dacă formula 90 atunci formula 10 Deci dacă formula 92 este șir Cauchy, atunci formula 12 este șir Cauchy. Prin urmare, spațiul liniar normat formula 77 fiind complet, există formula 13 adică seria formula 14 este convergentă. Reciproc, fie formula 15 un șir Cauchy în formula 16 Atunci există un subșir formula 99 astfel încât formula 100 1) Oricare spațiu liniar normat finit-dimensional este spațiu Banach. 2) Fie spațiul liniar normat
Spațiu Banach () [Corola-website/Science/309759_a_311088]
-
șir Cauchy, atunci formula 12 este șir Cauchy. Prin urmare, spațiul liniar normat formula 77 fiind complet, există formula 13 adică seria formula 14 este convergentă. Reciproc, fie formula 15 un șir Cauchy în formula 16 Atunci există un subșir formula 99 astfel încât formula 100 1) Oricare spațiu liniar normat finit-dimensional este spațiu Banach. 2) Fie spațiul liniar normat formula 101 al șirurilor formula 102 din formula 103 astfel încât seria formula 104 este convergentă, unde norma este definită de: Atunci formula 106 este spațiu Banach. "Demonstrație". Faptul că formula 107 este normă, rezultă din inegalitatea
Spațiu Banach () [Corola-website/Science/309759_a_311088]
-
spațiul liniar normat formula 77 fiind complet, există formula 13 adică seria formula 14 este convergentă. Reciproc, fie formula 15 un șir Cauchy în formula 16 Atunci există un subșir formula 99 astfel încât formula 100 1) Oricare spațiu liniar normat finit-dimensional este spațiu Banach. 2) Fie spațiul liniar normat formula 101 al șirurilor formula 102 din formula 103 astfel încât seria formula 104 este convergentă, unde norma este definită de: Atunci formula 106 este spațiu Banach. "Demonstrație". Faptul că formula 107 este normă, rezultă din inegalitatea lui Minkowski pentru sume finite. Fie formula 108 un șir
Spațiu Banach () [Corola-website/Science/309759_a_311088]
-
Folosind norma asociată cu produsul scalar, există noțiunea de submulțime densă, și definiția corectă pentru o bază ortonormală este cea că spațiul generat de ea trebuie să fie dens. Procedeul Gram-Schmidt este o metodă canonică care pornește de la un șir liniar independent {"v"} pe un spațiu prehilbertian și produce un șir ortonormal {"e"} astfel încât oricare ar fi "n" Prin procedura de ortonormalizare Gram-Schmidt, se arată: Teoremă. Orice spațiu prehilbertian separabil "V" are o bază ortonormală. Identitatea lui Parseval conduce imediat la
Spațiu prehilbertian () [Corola-website/Science/309773_a_311102]
-
se arată: Teoremă. Orice spațiu prehilbertian separabil "V" are o bază ortonormală. Identitatea lui Parseval conduce imediat la următoarea teoremă: Teoremă. Fie "V" un spațiu prehilbertian separabil și {"e"} o bază ortonormală a lui "V". Atunci aplicația este o aplicație liniară izometrică "V" → "l" cu imaginea densă. Această teoremă poate fi privită ca o formă abstractă a seriilor Fourier, în care o bază ortonormală arbitrară joacă rolul seriei de polinoame trigonometrice. Se observă că mulțimea de indecși poate fi luată ca
Spațiu prehilbertian () [Corola-website/Science/309773_a_311102]
-
se obține următorul rezultat din teoria seriilor Fourier: Teoremă. Fie "V" spațiul prehilbertian formula 41. Atunci secvența (indexată pe mulțimea numerelor întregi) de funcții continue este o bază ortonormală a spațiului formula 41 cu "L" ca produs scalar. Aplicația este o aplicație liniară izometrică cu imaginea densă. Ortogonalitatea șirului {e} se deduce imediat din faptul că dacă j ≠ k, atunci Șirul este normal prin construcția lui, pentru că are coeficienții aleși de așa natură încât norma este 1. În cele din urmă, faptul că
Spațiu prehilbertian () [Corola-website/Science/309773_a_311102]