850 matches
-
trecerea altor electroni este blocată în acea stare. Un semiconductor pur nu este util, deoarece nu este nici bun conductor, nici bun izolator. Dar o calitate importantă a semiconductorilor (și unele izolatoare cunoscute că semi-izolatoare) este acea de a crește conductivitatea și controlul acesteia prin dopare cu impurități și prin aplicarea câmpurilor electrice. Purtători de sarcină Electronii umplu locurile de la bază benzii de conducere care poate fi înțeleasă că adăugarea electronilor pe acea banza. Electronii nu sunt statici (datorită recombinației termice
Semiconductor () [Corola-website/Science/317120_a_318449]
-
studiului electricității până în anul 1766; a doua jumătate, mai influentă decât prima, reprezintă o descriere a teoriilor contemporane despre electricitate și sugestii pentru cercetări viitoare. În această a doua parte, Priestley mai raportează câteva dintre descoperirile sale, ca de exemplu conductivitatea cărbunelui și a altor substanțe chimice și continuumul dintre conductori și izolatori. Această descoperire a răsturnat "„una dintre cele mai timpurii și universale maxime despre electricitate”", adică cea care spunea că numai apa și metalele pot conduce electricitatea. Acesta și
Joseph Priestley () [Corola-website/Science/319129_a_320458]
-
o fabrică de bere din vecinătate). Între anii 1767 și 1770, acesta a prezentat Societății Regale cinci comunicari ale experimentelor efectuate mai devreme; primele patru studiau corona și alte fenomene referitoare la descărcarea electrică, în timp ce a cincea se raporta la conductivitatea cărbunilor din diferite surse. Munca sa experimentală ulterioară s-a concentrat în domeniul chimiei și pneumaticii. Priestley a publicat în 1772 primul volum din "The History and Present State of Discoveries Relating to Vision, Light and Colours" (menționată și ca
Joseph Priestley () [Corola-website/Science/319129_a_320458]
-
în condițiile frecării semiuscate; rezistență la coroziune, pentru a atenua efectul atacurilor chimice și electrochimice; proprietăți mecanice ridicate și stabile la temperaturile înalte de funcționare; modúl de elasticitate superior la temperaturi relativ mari, invariabil în timp, pentru a preveni vibrațiile; conductivitate termică ridicată.Nu există materiale care să satisfacă simultan cerințele enunțate. Norma ISO 6621-3 clasifică materialele destinate fabricației segmenților de piston în 6 clase, simbolizate cu cifrele 10, 20...60. Categoriile de materiale pentru segmenți sunt următoarele: a) fonta cenușie
Segment de piston (motor) () [Corola-website/Science/315009_a_316338]
-
din căldura evacuată din motor unui fluid rece (aerul din mediul ambiant). După modul de transfer termic schimbătoarele se împart în "schimbătoare de suprafață", la care transmiterea căldurii se face printr-un perete despărțitor, considerată suprafață de separație, cu o conductivitate termică cât mai mare și "schimbătoare prin amestec", la care transmiterea căldurii se face prin amestecul mediilor. Deoarece sunt mai simple și mai eficiente, schimbătoarele prin amestec sunt preferate în toate cazurile în care fluidele se pot amesteca. Transferul termic
Schimbător de căldură () [Corola-website/Science/318707_a_320036]
-
randamentul nervurilor se obține prin integrare de-a lungul nervurii și este dat de relația: unde: unde: formula 36 este înălțimea relativă a nervurii, unde coeficientul de ponderare formula 37 depinde de forma nervurii, expresiile sale găsindu-se în bibliografie, formula 38 este conductivitatea termică a materialului nervurii, formula 39 este grosimea nervurii. În general, pentru nervuri corect proiectate, cu grosime corespunzătoare, randamentul nervurii depășește 85%, deci nervurarea mărește efectiv suprafața de schimb de căldură. Schimbătoarele de tip regenerativ, cunoscute și sub numele de "recuperatoare
Schimbător de căldură () [Corola-website/Science/318707_a_320036]
-
caracteristice urmelor de impurități. Rubinele au culoarea caracteristică roșu aprins și calitățile de laseri datorită urmelor de crom. Safirele apar în diferite culori datorită diferitelor altor impurități, cum ar fi fierul și titanul. AlO este izolator electric, însă are o conductivitate termică relativ mare (30 WmK) pentru un material ceramic. Oxidul de aluminiu este complet insolubil în apă. În forma sa cristalină comună numită corindon sau α-oxid de aluminiu, duritatea sa îl face corespunzător pentru a fi utilizat ca abraziv și
Oxid de aluminiu () [Corola-website/Science/318764_a_320093]
-
prin contribuția uriașă a doctorului Steven Jones de la Laboratorul "Jet Propulsion Laboratory" din cadrul agenției spațiale americane. Aerogelul constituie o izolație termică bună, deoarece aproape neutralizează cele trei metode de transfer de căldură: convecția, conducția și radiația. Rezistența la transferul prin conductivitate este dată de componenta majoritar gazoasă. În special aici se evidențiază aerogelul pe bază de siliciu (SilicaGel), deoarece siliciul are de asemenea conducția termică mică. Rezistența la transferul convectiv este dată de faptul că aerul nu circulă în structura materialului
Aerogel () [Corola-website/Science/318802_a_320131]
-
apel la tehnicile folosite în MFN. Căldura se poate transmite prin conducție, convecție și radiație. Transmiterea prin conducție are loc în special în corpuri solide, conform ecuației Fourier, a cărei formă diferențială este: unde formula 27 este fluxul termic, formula 28 este conductivitatea termică, iar formula 29 este gradientul temperaturii. Conductivitatea termică este considerată adesea constantă, dar în realitate ea depinde de temperatură. În simulări ea poate fi calculată cu o relație algebrică. În caz că materialul nu este izotrop, ea este un tensor. În ecuația
Mecanica fluidelor numerică () [Corola-website/Science/322472_a_323801]
-
se poate transmite prin conducție, convecție și radiație. Transmiterea prin conducție are loc în special în corpuri solide, conform ecuației Fourier, a cărei formă diferențială este: unde formula 27 este fluxul termic, formula 28 este conductivitatea termică, iar formula 29 este gradientul temperaturii. Conductivitatea termică este considerată adesea constantă, dar în realitate ea depinde de temperatură. În simulări ea poate fi calculată cu o relație algebrică. În caz că materialul nu este izotrop, ea este un tensor. În ecuația Fourier apare operatorul nabla, ca urmare dezvoltările
Mecanica fluidelor numerică () [Corola-website/Science/322472_a_323801]
-
Entalpia sa de sublimare este de 571 kJ/kg (25.2 kJ/mol). Gheața carbonică este non-polară, cu un moment de dipol la zero, deci forțele van der Waals de atracție intermoleculară funcționează. Compoziția duce la un coeficient scăzut de conductivitate termică și electrică. Gheața carbonică („dry ice”) a fost descoperită pentru prima oară în 1834 de chimistul francez Charles Thilorier, care a publicat prima descriere a substanței. De-a lungul experimentelor sale, acesta a observat că la deschiderea unui capac
Gheață carbonică () [Corola-website/Science/327487_a_328816]
-
închidere cu așa-numita „anvelopă termica” și ambientul interior. Referitor la anvelopa termică, care separă fizic două medii diferite, se poate stabili faptul că două caracteristici fizice sunt omniprezente în materialele implicate și se găsesc cu certitudine în analiza higrotermică: conductivitatea termică și permeabilitatea. Conductivitatea termică este asociată temperaturilor prin folosirea termenilor flux cald sau flux rece (W) (fluxul rece este, în fapt, deficitul de energie termică față de o temperatură de referință) fiind o caracteristică fizică a oricărui material și variază
Principiul evitării condensului () [Corola-website/Science/330358_a_331687]
-
anvelopă termica” și ambientul interior. Referitor la anvelopa termică, care separă fizic două medii diferite, se poate stabili faptul că două caracteristici fizice sunt omniprezente în materialele implicate și se găsesc cu certitudine în analiza higrotermică: conductivitatea termică și permeabilitatea. Conductivitatea termică este asociată temperaturilor prin folosirea termenilor flux cald sau flux rece (W) (fluxul rece este, în fapt, deficitul de energie termică față de o temperatură de referință) fiind o caracteristică fizică a oricărui material și variază de la mare la scăzută
Principiul evitării condensului () [Corola-website/Science/330358_a_331687]
-
materialului. Permeabilitatea (tendința materialului de a permite trecerea vaporilor) și caracteristica ei asociată: permeanța (tendința de difuzie a vaporilor printr-un material de o grosime specificată) variază de la foarte permeabil la impermeabil (bariera de vapori). Practica relevă faptul că, datorită conductivității termice și permeabilității, într-o anvelopă termică expusă diferențelor de temperatură, la orice rată a difuziei vaporilor se va produce condens, undeva în câmpul termoizolației sau ansamblului permeabil la vapori, respectiv în zona de conversie a fluxurilor de căldură. Dintre
Principiul evitării condensului () [Corola-website/Science/330358_a_331687]
-
laborator, dar fără aplicații comerciale în prezent, grafitul este tratat cu ultrasunete de mare putere. Proprietățile diamantului sintetic sunt în strânsă legătură cu detaliile procedeului de fabricație; totuși, unele diamante sintetice (formate prin HPHT sau CVD) au proprietățile ca duritatea, conductivitatea termică sau mobilitatea electronilor superioare chiar față de unele diamante naturale. Diamantele sintetice sunt utilizate pe larg ca abrazivi, la tăierea și șlefuirea uneltelor și în radiatoarele electrice. Aplicațiile electronice ale diamantelor sintetice, printre care se numără comutatoarele de la centralele electrice
Diamant sintetic () [Corola-website/Science/328782_a_330111]
-
În mod tradițional, absența defectelor cristalelor este considerată a fi cea mai importantă calitate a diamantului. Puritatea și perfecțiunea cristalină mare face diamantul transparent, în timp ce duritatea, dispersia optică (luciul) și stabilitatea sa chimică îl transformă într-o piatră prețioasă populară. Conductivitatea termală mare este de asemenea un factor important pentru utilizările tehnice ale sale. Deși dispersia optică mare este o proprietate intrinsecă a tuturor diamantelor, celelalte proprietăți variază depinzând de modul de fabricare al diamantului. Diamantul poate fi un singur și
Diamant sintetic () [Corola-website/Science/328782_a_330111]
-
dislocărilor” rețelei (care sunt defecte din cadrul structurii cristaline) rețeaua fiind supusă unui stres de compresiune, și astfel crește duritatea și rezistența. Spre deosebire de majoritatea izolatorilor electrici, diamantul pur este un bun conductor de căldură datorită legăturilor covalente puternice din interiorul cristalului. Conductivitatea termică a diamantului este cea mai mare dintre a tuturor solidelor cunoscute. Cristalele singure de diamant sintetic îmbogățit în C (99,9%), diamantele pure din punct de vedere izotopic, au cea mai mare conductivitate termică cunoscută a unui material, 30
Diamant sintetic () [Corola-website/Science/328782_a_330111]
-
legăturilor covalente puternice din interiorul cristalului. Conductivitatea termică a diamantului este cea mai mare dintre a tuturor solidelor cunoscute. Cristalele singure de diamant sintetic îmbogățit în C (99,9%), diamantele pure din punct de vedere izotopic, au cea mai mare conductivitate termică cunoscută a unui material, 30 W/cm·K la temperatura camerei, de 7,5 ori mai mare decât a cuprului. Conductivitatea diamantelor naturale este redusă cu 1,1% din cauza izotopului natural de C, care acționează sub forma unei omogenități
Diamant sintetic () [Corola-website/Science/328782_a_330111]
-
diamant sintetic îmbogățit în C (99,9%), diamantele pure din punct de vedere izotopic, au cea mai mare conductivitate termică cunoscută a unui material, 30 W/cm·K la temperatura camerei, de 7,5 ori mai mare decât a cuprului. Conductivitatea diamantelor naturale este redusă cu 1,1% din cauza izotopului natural de C, care acționează sub forma unei omogenități în cadrul rețelei. Conductivitatea termică a diamantului este utilizată de câtre bijutierii și gemologii care ar practica o probă termică electronică pentru separarea
Diamant sintetic () [Corola-website/Science/328782_a_330111]
-
a unui material, 30 W/cm·K la temperatura camerei, de 7,5 ori mai mare decât a cuprului. Conductivitatea diamantelor naturale este redusă cu 1,1% din cauza izotopului natural de C, care acționează sub forma unei omogenități în cadrul rețelei. Conductivitatea termică a diamantului este utilizată de câtre bijutierii și gemologii care ar practica o probă termică electronică pentru separarea diamantelor de imitațiile lor. Aceste probe constau într-o pereche de termistori alimentați electric de către baterii și montați într-un vârf
Diamant sintetic () [Corola-website/Science/328782_a_330111]
-
importante în exploatarea minieră și la tăiere. În ultimii cincisprezece ani, s-au folosit instrumente din metal cu diamante CVD, dar deși încă promit multe, aceste instrumente au fost înlocuite semnificativ cu cele care conțin diamante PCD. Majoritatea materialelor cu conductivitate termală mare, cum ar fi metalele, sunt și conductori electrici. În contrast, diamantul sintetic pur are conductivitate termală mare, dar conductivitatea electrică neglijabilă. Această combinație este inestimabilă pentru domeniul electric în care diamantul este folosit ca radiator pentru diodele cu
Diamant sintetic () [Corola-website/Science/328782_a_330111]
-
cu diamante CVD, dar deși încă promit multe, aceste instrumente au fost înlocuite semnificativ cu cele care conțin diamante PCD. Majoritatea materialelor cu conductivitate termală mare, cum ar fi metalele, sunt și conductori electrici. În contrast, diamantul sintetic pur are conductivitate termală mare, dar conductivitatea electrică neglijabilă. Această combinație este inestimabilă pentru domeniul electric în care diamantul este folosit ca radiator pentru diodele cu laser de putere mare, ca matrice pentru lasere și în tranzistoarele de putere mare. Căldura de disipare
Diamant sintetic () [Corola-website/Science/328782_a_330111]
-
deși încă promit multe, aceste instrumente au fost înlocuite semnificativ cu cele care conțin diamante PCD. Majoritatea materialelor cu conductivitate termală mare, cum ar fi metalele, sunt și conductori electrici. În contrast, diamantul sintetic pur are conductivitate termală mare, dar conductivitatea electrică neglijabilă. Această combinație este inestimabilă pentru domeniul electric în care diamantul este folosit ca radiator pentru diodele cu laser de putere mare, ca matrice pentru lasere și în tranzistoarele de putere mare. Căldura de disipare eficientă prelungește durata de
Diamant sintetic () [Corola-website/Science/328782_a_330111]
-
de aceea au un preț destul de ridicat al radiatoarelor cu diamant. În tehnologia semiconductoarelor, disipatoarele termice din diamante sintetice împiedică siliciul și alte materiale semiconductoare să se supraîncălzească. Diamantul este dur și inert din punct de vedere chimic, și are conductivitate termală mare și coeficientul de expansiune termală mic. Aceste proprietăți fac din diamant un material superior oricărui alt material transparent folosit pentru transmiterea radiațiilor infraroșii și microundelor. Prin urmare, diamantele sintetice au început să înlocuiască seleniura de zinc din laserele
Diamant sintetic () [Corola-website/Science/328782_a_330111]
-
împreună cu sisteme de bobine pentru compensarea și controlul câmpului magnetic extern. Ecranarea feromagnetică și compensarea activă sunt metode standard utilizate la frecvențe joase. La frecvențe ridicate se folosește metoda de ecranare (absorbție cu curenți turbionari) prin utilizarea unor materiale cu conductivitate electrică ridicată. Pentru camere ecranate din materiale feromagnetice, ecranarea se realizează prin faptul că fluxul magnetic preferă calea cu valoarea cea mai ridicata a permeabilității magnetice. În cazul camerelor ecranate realizate din materiale neferomagnetice (Cu, Al), ecranarea este bazată pe
Magnetocardiografie () [Corola-website/Science/333381_a_334710]